
8/30/18

1

CompSci 516
Database	Systems

Lecture	2
SQL

(Incomplete	Notes)

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018

Announcements
• If	you	are	enrolled	to	the	class,	but	have	not	
received	the	email	from	Piazza,	please	send	me	an	
email

• If	you	are	on	the	waitlist	and	want	to	enroll,	please	
send	me	an	email

• HW1	will	be	released	soon	(~tomorrow)

• TA	office	hours:
– Yuchao:	LSRC	D309,	Mondays	1:30-2:30	pm
– Tianpeng:	LSRC	D344,	Wednesdays	1:30-2:30	pm

Duke	CS,	Fall	2018 2

Recap:	Lecture	1

• Why	use	a	DBMS
• Structured	data	model:	Relational	data	model
– table,	schema,	instance,	tuples,	attributes
– bag	and	set	semantic

• Logical	and	physical	data	independence

Duke	CS,	Fall	2018 3

Today’s	topic
• Overview	of	XML

• SQL	in	a	nutshell
– Reading	material:	[RG]	Chapters	3	and	5
– Additional	reading	for	practice:	[GUW]	Chapter	6

Duke	CS,	Fall	2018 4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.

XML:	an	overview

Duke	CS,	Fall	2018 5

Semi-structured	Data	and	XML

• XML:	Extensible	Markup	Language

• Will	not	be	covered	in	detail	in	class,	but	many	datasets	
available	to	download	are	in	this	form
– You	will	download	the	DBLP	dataset	in	XML	format	and	
transform	into	relational	form	(in	HW1)

• Data	does	not	have	a	fixed	schema	
– “Attributes”	are	part	of	the	data
– The	data	is	“self-describing”
– Tree-structured

Duke	CS,	Fall	2018 6

8/30/18

2

XML:	Example
<article	mdate="2011-01-11”	key="journals/acta/Saxena96">

<author>Sanjeev	Saxena</author>
<title>Parallel	Integer	Sorting	and	Simulation	Amongst	CRCW	

Models.</title>
<pages>607-619</pages>
<year>1996</year>
<volume>33</volume>
<journal>Acta Inf.</journal>
<number>7</number>
<url>db/journals/acta/acta33.html#Saxena96</url>
<ee>http://dx.doi.org/10.1007/BF03036466</ee>

</article>

Duke	CS,	Fall	2018 7

Attributes

Elements

Attribute	vs.	Elements

• Elements	can	be	repeated	and	nested
• Attributes	are	unique	and	atomic

Duke	CS,	Fall	2018 8

XML vs.	Relational	Databases

Which	one	is	easier?
• XML	(semi-structured)	to	relational	(structured)
or	
• relational	(structured)	to	XML	(semi-structured)?

Duke	CS,	Fall	2018 9

XML	to	Relational	Model

• Problem	1:	Repeated	attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database	Management	Systems</title>
<publisher>	McGraw	Hill

</book>

What	is	a	good	relational	schema?

Duke	CS,	Fall	2018 10

XML	to	Relational	Model

• Problem	1:	Repeated	attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database	Management	Systems</title>
<pubisher>	McGraw	Hill</publisher>

</book>

Duke	CS,	Fall	2018 11

Title Publisher Author1 Author2

What	if	the	paper
has	a	single	author?

XML	to	Relational	Model

• Problem	1:	Repeated	attributes
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database	Systems	– The	Complete	Book</title>
<pubisher>Prentice	Hall</publisher>

</book>

Duke	CS,	Fall	2018 12

Title Publisher Author1 Author2

Does	not	work

8/30/18

3

XML	to	Relational	Model

Duke	CS,	Fall	2018 13

BookId Title Publisher
b1 Database	

Management	
Systems

McGraw
Hill

b2 Database	
Systems	– The	
Complete	
Book

Prentice	
Hall

Book
BookId Author
b1 Ramakrishnan

b1 Gehrke

b2 Garcia-Molina

b2 Ullman

b2 Widom

BookAuthoredBy

XML	to	Relational	Model

• Problem	2:	Missing	
attributes

<book>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database	Management	Systems</title>
<pubisher>	McGraw	Hill
<edition>Third</edition>

</book>
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database	Systems	– The	Complete	

Book</title>
<pubisher>Prentice	Hall</publisher>

</book>

Duke	CS,	Fall	2018 14

BookI
d

Title Publisher Edition

b1 Database	
Manageme
nt	Systems

McGraw
Hill

Third

b2 Database	
Systems	–
The	
Complete	
Book

Prentice	
Hall

null

Summary:	Data	Models

• Relational	data	model	is	the	most	standard	for	
database	managements
– and	is	the	main	focus	of	this	course

• Semi-structured	model/XML	is	also	used	in	practice	–
you	will	use	them	in	hw assignments

• Unstructured	data	(text/photo/video)	is	unavoidable,	
but	won’t	be	covered	in	this	class

Duke	CS,	Fall	2018 15

SQL
(Stuctured Query	Language)

Duke	CS,	Fall	2018 16

Relational	Query	Languages

• A	major	strength	of	the	relational	model:	supports	
simple,	powerful	querying of	data.	

• Queries	can	be	written	intuitively,	and	the	DBMS	is	
responsible	for	an	efficient	evaluation
– The	key:	precise	semantics	for	relational	queries
– Based	on	a	sound	theory!
– Allows	the	optimizer	to	extensively	re-order	operations,	
and	still	ensure	that	the	answer	does	not	change.

Duke	CS,	Fall	2018 17

The	SQL	Query	Language

• Developed	by	IBM	(systemR)	in	the	1970s	based	on	
Ted	Codd’s relational	model
– First	called	“SEQUEL”	(Structured	English	Query	Language)

• First	commercialized	by	Oracle	(then	Relational	
Software)in	1979

• Standards	by	ANSI	and	ISO	since	it	is	used	by	many	
vendors
– SQL-86,	-89	(minor	revision),	-92	(major	revision),	-96,	-99	
(major	extensions),		-03,	-06,	-08,	-11,	-16

Duke	CS,	Fall	2018 18

8/30/18

4

Purposes	of	SQL

• Data	Manipulation	Language	(DML)
– Querying:	SELECT-FROM-WHERE
– Modifying:	INSERT/DELETE/UPDATE

• Data	Definition	Language	(DDL)
– CREATE/ALTER/DROP

19Duke	CS,	Fall	2018

The	SQL	Query	Language

• To	find	all	18	year	old	students,	we	can	write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

Duke	CS,	Fall	2018 20

all	attributes

Querying	Multiple	Relations
• What	does	the	following	

query	compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get: ??

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Querying	Multiple	Relations
• What	does	the	following	

query	compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Creating	Relations	in	SQL
• Creates	the	“Students”	relation

– the		type	(domain)	of	each	field	is	
specified

– enforced	by	the	DBMS	whenever	tuples	
are	added	or	modified

• As	another	example,	the			
“Enrolled”	table	holds				information	
about	courses							that	students	take

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa REAL)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

Duke	CS,	Fall	2018 23

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students
Enrolled

Destroying	and	Altering	Relations

• Destroys	the	relation	Students
– The	schema	information	and the	tuples	are	deleted.

DROP TABLE Students

• The schema of Students is altered by adding
a new field; every tuple in the current
instance is extended with a NULL value in
the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Duke	CS,	Fall	2018 24

8/30/18

5

Adding	and	Deleting	Tuples

• Can	insert	a	single	tuple	using:
INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

• Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Duke	CS,	Fall	2018 25

Integrity	Constraints	(ICs)

• IC:	condition	that	must	be	true	for	any instance	of	the	database
– e.g.,	domain	constraints
– ICs	are	specified	when	schema	is	defined
– ICs	are	checked	when	relations	are	modified

• A legal	instance	of	a	relation	is	one	that	satisfies	all	specified	ICs
– DBMS	will	not	allow	illegal	instances

• If	the	DBMS	checks	ICs,	stored	data	is	more	faithful	to	real-world	
meaning
– Avoids	data	entry	errors,	too!

Duke	CS,	Fall	2018 26

Keys	in	a	Database

• Key	/	Candidate	Key
• Primary	Key
• Super	Key
• Foreign	Key

• Primary	key	attributes	are	underlined in	a	schema
– Person(pid,	address,	name)
– Person2(address,	name,	age,	job)

Duke	CS,	Fall	2018 27

Primary	Key	Constraints

• A	set	of	fields	is	a	key for	a	relation	if	:
1.	No	two	distinct	tuples	can	have	same	values	in	all	key	fields,	and
2.	This	is	not	true	for	any	subset	of	the	key

• Part	2	false?	A	superkey

• If	there	are	>	1	keys	for	a	relation,	one	of	the	keys	is	chosen	
(by	DBA	=	DB	admin)	to	be	the	primary	key
– E.g.,	sid	is	a	key	for	Students
– The	set	{sid,	gpa}	is	a	superkey.

• Any	possible	benefit	to	refer	to	a	tuple	using	primary	key	
(than	any	key)?	

Duke	CS,	Fall	2018 28

Primary	and	Candidate	Keys	in	SQL

CREATE TABLE Enrolled
(sid CHAR(20)

cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???)

• “For a given student and course,
there is a single grade.”

Duke	CS,	Fall	2018 29

• Possibly	many	candidate	keys
– specified	using	UNIQUE
– one	of	which	is	chosen	as	the	primary	key.

Primary	and	Candidate	Keys	in	SQL

Duke	CS,	Fall	2018 30

• Possibly	many	candidate	keys
– specified	using	UNIQUE
– one	of	which	is	chosen	as	the	primary	key.

• “For a given student and course,
there is a single grade.”

8/30/18

6

Primary	and	Candidate	Keys	in	SQL

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

Duke	CS,	Fall	2018 31

• Possibly	many	candidate	keys
– specified	using	UNIQUE
– one	of	which	is	chosen	as	the	primary	key.

Primary	and	Candidate	Keys	in	SQL

Duke	CS,	Fall	2018 32

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

• Possibly	many	candidate	keys
– specified	using	UNIQUE
– one	of	which	is	chosen	as	the	primary	key.

Primary	and	Candidate	Keys	in	SQL

Duke	CS,	Fall	2018 33

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

• Used carelessly, an IC can prevent the storage
of database instances that arise in practice!

• Possibly	many	candidate	keys
– specified	using	UNIQUE
– one	of	which	is	chosen	as	the	primary	key.

Foreign	Keys,	Referential	Integrity

• Foreign	key	:	Set	of	fields	in	one	relation	that	is	used	to	
`refer’	to	a	tuple	in	another	relation
– Must	correspond	to	primary	key	of	the	second	relation
– Like	a	`logical	pointer’

• E.g.	sid is	a	foreign	key	referring	to	Students:
– Enrolled(sid:	string,	cid:	string,	grade:	string)
– If	all	foreign	key	constraints	are	enforced,		referential	
integrity	is	achieved

– i.e.,	no	dangling	references

Duke	CS,	Fall	2018 34

Foreign	Keys	in	SQL
• Only	students	listed	in	the	Students	relation	should	be	
allowed	to	enroll	for	courses

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Duke	CS,	Fall	2018 35

Enforcing	Referential	Integrity
• Consider	Students	and	Enrolled

– sid	in	Enrolled	is	a	foreign	key	that	references	Students.

• What	should	be	done	if	an	Enrolled	tuple	with	a	non-existent	
student	id	is	inserted?
– Reject	it!

• What	should	be	done	if	a	Students	tuple	is	deleted?
– Three	semantics	allowed	by	SQL
1. Also	delete	all	Enrolled	tuples	that	refer	to	it	(cascade	delete)
2. Disallow	deletion	of	a	Students	tuple	that	is	referred	to
3. Set	sid	in	Enrolled	tuples	that	refer	to	it	to	a	default	sid
4. (in	addition	in	SQL):	Set	sid	in	Enrolled	tuples	that	refer	to	it	to	a	special	

value	null,	denoting	`unknown’	or	`inapplicable’

• Similar	if	primary	key	of	Students	tuple	is	updated
Duke	CS,	Fall	2018 36

8/30/18

7

Referential	Integrity	in	SQL

• SQL/92	and	SQL:1999	support	
all	4	options	on	deletes	and	
updates.
– Default	is	NO	ACTION			
(delete/update	is	
rejected)

– CASCADE (also	delete	all	
tuples	that	refer	to	
deleted	tuple)

– SET	NULL	/ SET	DEFAULT		(sets	
foreign	key	value	of	
referencing	tuple)

CREATE TABLE Enrolled
(sid CHAR(20) DEFAULT ‘000’,
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Where	do	ICs	Come	From?
• ICs	are	based	upon	the	semantics	of	the	real-world	enterprise	

that	is	being	described	in	the	database	relations

• Can	we	infer	ICs	from	an	instance?
– We	can	check	a	database	instance	to	see	if	an	IC	is	violated,	but	we	

can	NEVER infer	that	an	IC	is	true	by	looking	at	an	instance.
– An	IC	is	a	statement	about	all	possible	instances!
– From	example,	we	know	name	is	not	a	key,	but	the	assertion	that	sid	is	

a	key	is	given	to	us.

• Key	and	foreign	key	ICs	are	the	most	common;	more	general	
ICs	supported	too

Duke	CS,	Fall	2018 38

Example	Instances

• What	does	the	key	(sid,	bid,	day)	in	
Reserves	mean?

• If	the	key	for	the	Reserves	relation	
contained	only	the	attributes (sid,	
bid),	how	would	the	semantics	
differ?

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Next…
• Querying	using	SQL
– semantic
– joins
– group	bys and	aggregates
– nested	queries	

Duke	CS,	Fall	2018 40

Basic	SQL	Query

• relation-list	 A	list	of	relation	names
– possibly	with	a	“range	variable” after	each	name

• target-list A	list	of	attributes	of	relations	in	relation-list
• qualification Comparisons	

– (Attr op	const)	or	(Attr1	op	Attr2)
– where	op	is	one	of	=	,	<,	>,	<=,	>=	combined	using	AND,	OR	and	NOT

• DISTINCT is	an	optional	keyword	indicating	that	the	answer	should	not	
contain	duplicates
– Default	is	that	duplicates	are	not	eliminated!		

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke	CS,	Fall	2018 41

Conceptual	Evaluation	Strategy

• Semantics of	an	SQL	query	defined	in	terms	of	the	following	
conceptual	evaluation	strategy:
– Compute	the	cross-product	of	<relation-list>
– Discard	resulting	tuples	if	they	fail	<qualifications>
– Delete	attributes	that	are	not	in	<target-list>
– If	DISTINCT is	specified,	eliminate	duplicate	rows

• This	strategy	is	probably	the	least	efficient	way	to	compute	a	
query!
– An	optimizer	will	find	more	efficient	strategies	to	compute	the	
same	answers

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke	CS,	Fall	2018 42

Can	see	the	next	few	slides	first

8/30/18

8

Example	of	Conceptual	Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Step	1:	Form	cross	product	of	Sailor	and	Reserves

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Example	of	Conceptual	Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Step	2:	Discard	tuples	that	do	not	satisfy	<qualification>

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Example	of	Conceptual	Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Step	3:	Select	the	specified	attribute(s)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

A	Note	on	“Range	Variables”
• Really	needed	only	if	the	same	relation	appears	twice	
in	the	FROM clause
– sometimes	used	as	a	short-name

• The	previous	query	can	also	be	written	as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!

OR

Duke	CS,	Fall	2018 46

Find	sailor	ids	who’ve	reserved	
at	least	one	boat

SELECT ????
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke	CS,	Fall	2018 47

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

• Would	adding	DISTINCT	to	this	
query	make	a	difference?

Duke	CS,	Fall	2018 48

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Find	sailor	ids	who’ve	reserved	
at	least	one	boat

8/30/18

9

Find	sailors	who’ve	reserved	at	least	one	boat

• Would	adding	DISTINCT	to	this	
query	make	a	difference?

Duke	CS,	Fall	2018 49

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Joins

• Condition/Theta-Join
• Equi-Join
• Natural-Join
• (Left/Right/Full)	Outer-Join

Duke	CS,	Fall	2018 50

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Condition/Theta	Join

Duke	CS,	Fall	2018 51

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age >= 40

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Form	cross	product,	discard	rows	that	do	not	satisfy	the	condition

Equi Join

Duke	CS,	Fall	2018 52

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age = 45

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

A	special	case	of	theta	join
Join	condition	only	has	equality	predicate	=	

Natural	Join

Duke	CS,	Fall	2018 53

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S NATURAL JOIN Reserves R

sid sname rating age bid day
22 dustin 7 45 101 10/10/96
22 dustin 7 45 103 11/12/96
31 lubber 8 55 101 10/10/96
31 lubber 8 55 103 11/12/96
58 rusty 10 35 101 10/10/96
58 rusty 10 35 103 11/12/96

A	special	case	of	equi join
Equality	condition	on	ALL	common	predicates	(sid)
Duplicate	columns	are	eliminated

Outer	Join

Duke	CS,	Fall	2018 54

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT S.sid, R. bid
FROM Sailors S LEFT OUTER JOIN Reserves R
ON S.sid=R.sid

Preserves	all	tuples	from	the	left	table	whether	or	not	there	is	a	match
if	no	match,	fill	attributes	from	right	with	null
Similarly	RIGHT/FULL	outer	join

sid bid
22 101
31 null
58 103

8/30/18

10

Expressions	and	Strings

• Illustrates	use	of	arithmetic	expressions	and	string	pattern	matching
• Find	triples	(of	ages	of	sailors	and	two	fields	defined	by	expressions)	

for	sailors	
– whose	names	begin	and	end	with	B	and	contain	at	least	three	characters

• LIKE is	used	for	string	matching.	`_’	stands	for	any	one	character	
and	`%’	stands	for	0	or	more	arbitrary	characters
– You	will	need	these	often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke	CS,	Fall	2018 55

Find	sid’s of	sailors	who’ve	reserved	a	red	or a	
green	boat

• Assume	a	Boats	relation

• UNION:	Can	be	used	to	
compute	the	union	of	any	
two	union-compatible sets	of	
tuples
– can	themselves	be	the	result	of	

SQL	queries

• If	we	replace	OR by	AND in	the	
first	version,	what	do	we	get?

• Also	available:		EXCEPT (What	
do	we	get	if	we	replace	UNION
by	EXCEPT?)

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find	sid’s	of	sailors	who’ve	reserved	
a	red	and a	green	boat

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find	sid’s of	sailors	who’ve	reserved	
a	red	and a	green	boat

• INTERSECT:	Can	be	used	to	
compute	the	intersection	of	
any	two		union-compatible
sets	of	tuples.	
– Included	in	the	SQL/92	

standard,	but	some	systems	
don’t	support	it

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Nested	Queries

• A	very	powerful	feature	of	SQL:		
– a	WHERE/FROM/HAVING clause	can	itself	contain	an	SQL	query

• To	find	sailors	who’ve	not	reserved	#103,	use	NOT	IN.
• To	understand	semantics	of	nested	queries,	think	of	a	
nested	loops	evaluation
– For	each	Sailors	tuple,	check	the	qualification	by	computing	the	
subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke	CS,	Fall	2018 59

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Nested	Queries	with	Correlation

• EXISTS is	another	set	comparison	operator,	like	IN
• Illustrates	why,	in	general,	subquery must	be	re-
computed	for	each	Sailors	tuple		

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke	CS,	Fall	2018 60

Find names of sailors who’ve reserved boat #103:

8/30/18

11

Nested	Queries	with	Correlation

• If	UNIQUE is	used,	and	*	is	replaced	by	R.bid,	finds	
sailors	with	at	most	one	reservation	for	boat	#103
– UNIQUE checks	for	duplicate	tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke	CS,	Fall	2018 61

Find names of sailors who’ve reserved boat #103: More	on	Set-Comparison	Operators

• We’ve	already	seen	IN,	EXISTS	and	UNIQUE
• Can	also	use	NOT	IN,	NOT	EXISTS	and	NOT	UNIQUE.
• Also	available:		op ANY,	op ALL,		op IN

– where op	:	>,	<,	=,	<=,	>=
• Find	sailors	whose	rating	is	greater	than	that	of	some	
sailor	called	Horatio
– similarly	ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke	CS,	Fall	2018 62

