
CompSci 516
Database	Systems

Lecture	21
Recursive	Query	Evaluation	

and
Datalog

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Annoucements

• HW3	due	Monday	11/26
• Next	week	

– practice	pop-up	quiz	on	transactions	(all	lectures)

• Project	presentation	in	last	class,	but	final	
report	due	2	days	before	final

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 2



Where	are	we	now?
We	learnt
ü Relational	Model	and	Query	

Languages
ü SQL,	RA,	RC
ü Postgres	(DBMS)
§ HW1

ü Database	Normalization
ü DBMS	Internals

ü Storage
ü Indexing
ü Query	Evaluation
ü Operator	Algorithms
ü External	sort
ü Query	Optimization

ü Map-reduce	and	spark
§ HW2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

• Transactions
– Basic	concepts
– Concurrency	control
– Recovery

• Distributed	DBMS
• NOSQL
• Parallel	DBMS



Today

• Semantic	of	recursion in	databases

• Datalog
– for	recursion in	database	queries

• Views

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4



5

http://xkcdsw.com/1105

Recursion!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



A	motivating	example

• Example:	find	Bart’s	ancestors
• “Ancestor”	has	a	recursive	definition

– 𝑋 is	𝑌’s	ancestor	if
• 𝑋 is	𝑌’s	parent,	or
• 𝑋 is	𝑍’s	ancestor	and	𝑍 is	𝑌’s	ancestor

6

Parent (parent,	child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe
Bart Lisa

MargeHomer

Abe

Ape

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Recursion	in	SQL

• SQL2	had	no	recursion
– You	can	find	Bart’s	parents,	grandparents,	great	
grandparents,	etc.

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

– But	you	cannot	find	all	his	ancestors	with	a	single	
query

7Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Recursion	in	Databases

• Consider	a	graph	G(V,	E).	Can	you	find	out	all	“ancestor”	
vertices	that	can	reach	“x”	using	Relational	Algebra/Calculus?

• NO!	– ANCESTOR	cannot	be	defined	using	a	constant-size	
union	of	select-project-join	queries	(conjunctive	queries)

• No	RA/RC	expressions	can	express	ANCESTOR	or	
REACHABILITY	(TRANSITIVE	CLOSURE)	(Aho-Ullman,	1979)

• A	limitation	of	RA/RC	in	expressing	recursive	queries

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8



Recursion	in	Databases

• What	can	we	do	to	overcome	the	limitation?

1. Embed	SQL	in	a	high	level	language	supporting	recursion
– (-)	destroys	the	high	level	declarative	characteristic	of	SQL

2. Augment	RC	with	a	high	level	declarative	mechanism	for	
recursion	
– Datalog (Chandra-Harel,	1982)

• SQL:1999	(SQL3)	and	later	versions	support	“linear	Datalog”

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9



Brief	History	of	Datalog

• Motivated	by	Prolog	– started	back	in	80’s	– then	quiet	for	a	long	
time

• A	long	argument	in	the	Database	community	whether	recursion	
should	be	supported	in	query	languages
– “No	practical	applications	of	recursive	query	theory	...	have	been	found	to	

date”—Michael	Stonebraker,	1998
Readings	in	Database	Systems,	3rd	Edition	Stonebraker and	Hellerstein,	
eds.

– Recent	work	by	Hellerstein et	al.	on	Datalog-extensions	to	build	
networking	protocols	and	distributed	systems.	[Link]

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10



Datalog is	resurging!

• Number	of	papers	and	tutorials	in	DB	conferences

• Applications	in	
– data	integration,	declarative	networking,	program	analysis,	information	

extraction,	network	monitoring,	security,	and	cloud	computing	

• Systems	supporting	datalog in	both	academia	and	industry:
– Lixto (information	extraction)
– LogicBlox (enterprise	decision	automation)
– Semmle (program	analysis)	
– BOOM/Dedalus (Berlekey)
– Coral
– LDL++

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11



Reading	Material:		Datalog
Optional:
1. The	datalog chapters	in	the	“Alice	Book”	
Foundations	of	Databases
Abiteboul-Hull-Vianu
Available	online:		http://webdam.inria.fr/Alice/

2.	Datalog tutorial
SIGMOD	2011
“Datalog and	Emerging	Applications:	An	
Interactive	Tutorial”

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

Acknowledgement:	
Some	of	the	following	slides	have	been	borrowed	from
slides	by	Prof.	Jun	Yang



Recursive	Query	in	SQL

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13



Recursion	in	SQL

• SQL2	had	no	recursion

• SQL3	introduces	recursion
– WITH clause
– Implemented	in	PostgreSQL	(common	table	
expressions)

14Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



base	case

Ancestor	query	in	SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
(
(SELECT parent, child FROM Parent) 
UNION

(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

15

Query	using	
the	relation
defined	in	
WITH clause

Define	a
relation

recursively

recursion step

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Fixed	point	of	a	function

• If	𝑓: 𝑇 → 𝑇 is	a	function	from	a	type	𝑇 to	itself,	
a	fixed	point	of	𝑓 is	a	value	𝑥 such	that	𝑓 𝑥 =
𝑥

• Example:	What	is	the	fixed	point	of	𝑓 𝑥 =
𝑥 2⁄ ?
– 0,	because	𝑓 0 = 0 2⁄ = 0

16Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



To	compute	fixed	point	of	a	function	f

• Start	with	a	“seed”:	𝑥 ← 𝑥.
• Compute	𝑓 𝑥

– If	𝑓 𝑥 = 𝑥,	stop;	𝑥 is	fixed	point	of	𝑓
– Otherwise,	𝑥 ← 𝑓 𝑥 ;	repeat

• Example:	compute	the	fixed	point	of	𝑓 𝑥 = 𝑥 2⁄
– With	seed	1:	1,	1/2,	1/4,	1/8,	1/16,	…	→ 0

FDoesn’t	always	work,	but	happens	to	work	for	us!

17Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Fixed	point	of	a	query

• A	query	𝑞 is	just	a	function	that	maps	an	input	table	to	an	output	
table,	so	a	fixed	point	of	𝑞 is	a	table	𝑇 such	that	𝑞 𝑇 = 𝑇

To	compute	fixed	point	of	𝑞

• Start	with	an	empty	table:	𝑇 ← ∅
• Evaluate	𝑞 over	𝑇

– If	the	result	is	identical	to	𝑇,	stop;	𝑇 is	a	fixed	point
– Otherwise,	let	𝑇 be	the	new	result;	repeat

F Starting	from	∅ produces	the	unique	minimal	fixed	point (assuming	
𝑞 is	monotone)

18Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Finding	ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
– Think	of	the	definition	as	Ancestor =	𝑞(Ancestor)

19

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape LisaDuke	CS,	Fall	2018 CompSci	516:	Database	Systems



Linear	recursion

• With	linear	recursion,	a	recursive	definition	can	make	only	one	
reference	to	itself

• Non-linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

20Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Linear	vs.	non-linear	recursion

• Linear	recursion	is	easier	to	implement
– For	linear	recursion,	just	keep	joining	“newly	generated”	

Ancestor rows	with	Parent
• Homework:	try	to	figure	out	why	it	should	work

– For	non-linear	recursion,	need	to	join	newly	generated	Ancestor
rows	with	all	existing	Ancestor rows

• Non-linear	recursion	may	take	fewer	steps	to	converge,	but	
perform	more	work
– Example:	𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒
– Linear	recursion	takes	4	steps
– Non-linear	recursion	takes	3	steps

• More	work:	e.g.,	𝑎 → 𝑑 has	two	different	derivations

21Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Lecture	22

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22



Today

• Finish	recursion/datalog +	views
• Finish	Selinger’s algorithm	from	query	
optimization	lecture
– Lecture	12

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23



Announcements

• No	class	on	Thursday
– Happy	thanksgiving!
– No	office	hours	during	the	break	(post	on	piazza,	schedule	an	appointment)

• Today	we	will	have	the	5th pop-up	quiz
– Will	be	posted	at	the	end	of	the	class
– Will	be	open	for	24	hours

• There	might	be	a	6th (and	last)	pop-up	quiz	next	Tuesday
– either	in	class	or	take	home
– Topic:	Query	evaluation	+	optimization

• Lecture	10,	12,	Selinger’s algorithm	from	today

• There	will	be	some	practice	pop-up	quizzes	during	the	study	break
– won’t	be	graded
– will	be	open	for	2	days,	then	the	answers	will	be	revealed

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24



Announcements
• Project	presentation	in	class	on	Thursday	Nov	29

– So	that	everyone	knows	what	you	have	been	working	
on!

– And	can	compare	with	your	progress

• But	you	will	submit	final	report	2	days	before	the	
final	exam
– you	can	keep	working	on	the	project
– we	will	give	you	feedback	in	the	next	few	days
– there	might	be	a	short	15	mins	meeting	with	
instructor	+	TAs	if	we	have	questions	the	week	before	
the	final	exam

– final	grade	of	projects	will	depend	on	the	final	
outcome/report	(not	the	status	in	the	presentation)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25



Announcements
• Presentation

– 14	projects	in	75	mins	– 4	mins	per	project!	
– Not	everyone	has	to	present	(up	to	you)

• everyone	in	a	group	gets	the	same	grade

– You	present	the	current	status	of	the	project
• problem,	example,	your	approach,	what	you	plan	

– Best	to	show	plots/	screenshots/	results/	demo!	
– Try	to	show	the	most	interesting	
observation/findings	in	4	mins!

– Tell	us	what	you	want	to	do	before	you	submit	the	
final	report	(if	anything)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26



27

http://xkcdsw.com/3080

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Mutual	recursion	example

• Table	Natural (n)	contains	1,	2,	…,	100

• Which	numbers	are	even/odd?
– An	odd	number	plus	1	is	an	even	number
– An	even	number	plus	1	is	an	odd	number
– 1	is	an	odd	number

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

28

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Semantics	of	WITH

• WITH RECURSIVE 𝑅7 AS 𝑄7, …,
RECURSIVE 𝑅9 AS 𝑄9

𝑄;
– 𝑄 and	𝑄7,… , 𝑄9 may	refer	to	𝑅7, … , 𝑅9

• Semantics
1.	𝑅7 ← ∅,… , 𝑅9 ← ∅

2.	Evaluate	𝑄7,… , 𝑄9 using	the	current	contents	of	𝑅7, … , 𝑅9:
𝑅79<= ← 𝑄7,… , 𝑅99<= ← 𝑄9

3.	If	𝑅>9<= ≠ 𝑅> for	some	𝑖
3.1.	𝑅7 ← 𝑅79<=, … , 𝑅9 ← 𝑅99<=
3.2.	Go	to	2.

4.	Compute	𝑄 using	the	current	contents	of	𝑅7, …𝑅9
and	output	the	result

29Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Computing	mutual	recursion

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

• Even =	∅,	Odd =	∅
• Even =	∅,	Odd =	{1}
• Even =	{2},	Odd =	{1}
• Even =	{2},	Odd =	{1,	3}
• Even =	{2,	4},	Odd =	{1,	3}
• Even =	{2,	4},	Odd =	{1,	3,	5}
• …

30Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Mixing	negation	with	recursion

• If	𝑞 is	non-monotone
– The	fixed-point	iteration	may	flip-flop	and	never	converge
– There	could	be	multiple	minimal	fixed	points—we	wouldn’t	
know	which	one	to	pick	as	answer!

• Example:	popular	users	(pop	≥ 0.8)	join	either	Jessica’s	
Circle	or	Tommy’s	(but	not	both)
– Those	not	in	Jessica’s	Circle	should	be	in	Tom’s
– Those	not	in	Tom’s	Circle	should	be	in	Jessica’s

• WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

31Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Fixed-point	iter may	not	converge
• WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

32

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid uid

TommyCircle JessicaCircle
uid

142

121

uid

142

121

TommyCircle JessicaCircle

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Multiple	minimal	fixed	points
• WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

33

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid

142

uid

121

TommyCircle JessicaCircle
uid

121

uid

142

TommyCircle JessicaCircle

Problem:	What	do	we	answer	if	someone	asks	whether	121	belongs	to	JessicaCircle?Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Legal	mix	of	negation	and	recursion
• Construct	a	dependency	graph

– One	node	for	each	table	defined	in	WITH
– A	directed	edge	𝑅 → 𝑆 if	𝑅 is	defined	in	terms	of	𝑆
– Label	the	directed	edge	“−”	if	the	query	defining	𝑅 is	not	

monotone	with	respect	to	𝑆

• Legal	SQL3	recursion:	no	cycle	with	a	“−”	edge
– Called	stratified	negation

• Bad	mix:	a	cycle	with	at	least	one	edge	labeled	“−”

34

Ancestor

Legal!

TommyCircle JessicaCircle

−

− Illegal!
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Stratified	negation	example

• Find	pairs	of	persons	with	no	common	ancestors
WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)),

Person(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person
FROM Person p1, Person p2
WHERE p1.person <> p2.person)
EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;

35

Ancestor

Person

NoCommonAnc

−

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Evaluating	stratified	negation

• The	stratum of	a	node	𝑅 is	the	maximum	number	of	“−”	
edges	on	any	path	from	𝑅
in	the	dependency	graph
– Ancestor:	stratum	0
– Person:	stratum	0
– NoCommonAnc:	stratum	1

• Evaluation	strategy
– Compute	tables	lowest-stratum	first
– For	each	stratum,	use	fixed-point	iteration	on	all	nodes	in	that	

stratum
• Stratum	0:	Ancestor and	Person
• Stratum	1:	NoCommonAnc

F Intuitively,	there	is	no	negation	within	each	stratum

36

Ancestor

Person

NoCommonAnc

−

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Practice	Datalog on	whiteboard

• Write	Datalog program	for	reachability:
– x	can	reach	y
– start	with	E(u,	v)	:	an	edge	exists	from	u	to	v

• E(u,	v,	c):	an	edge	exists	from	u	to	v	of	color	“c”
– e.g.	E(1,	2,	blue),E(2,	3,	red),	….

• Find	node	pairs	x,	y	such	that	x	can	reach	y	by	a	
blue	path

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37



Summary	so	far

• SQL3	WITH recursive	queries
• Solution	to	a	recursive	query	(with	no	negation):	
unique	minimal	fixed	point

• Computing	unique	minimal	fixed	point:	fixed-
point	iteration	starting	from	∅

• Mixing	negation	and	recursion	is	tricky
– Illegal	mix:	fixed-point	iteration	may	not	converge;	
there	may	be	multiple	minimal	fixed	points

– Legal	mix:	stratified	negation	(compute	by	fixed-point	
iteration	stratum	by	stratum)

• Another	language	for	recursion:	Datalog

38Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Datalog

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39



Datalog:	Another	query	language	for	
recursion

• Ancestor(x,	y)	:- Parent(x,	y)
• Ancestor(x,	y):- Parent(x,	z),	Ancestor(z,	y)

• Like	logic	programming
• Multiple	rules
• Same	“head”	=	union
• “,”	=	AND

• Same	semantics	that	we	discussed	so	far

40Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Recall	our	drinker	example	in	
RC	(Lecture	4)

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

41CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Drinker	example	is	from	slides	by	Profs.	Balazinska and	Suciu
and	the	[GUW]	book



Write	it	as	a	Datalog Rule
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

42CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

RC:
Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)



Write	it	as	a	Datalog Rule
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

43CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)

RC:
Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

• Quick	differences:
– Uses	“:-”	not	=
– no	need	for	$ (assumed	by	default)
– Use	“,”	on	the	right	hand	side	(RHS)	
– Anything	on	RHS	the	of	:- is	assumed	to	be	combined	with	∧ by	default
– ",	Þ,	not	allowed	– they	need	to	use	negation	¬
– Standard	“Datalog”	does	not	allow	negation
– Negation	allowed	in	datalog with	negation

• How	to	specify	disjunction	(OR	/	⋁)?



Example:	OR	in	Datalog
Find drinkers that (a) either frequent some bar that serves some beer 
they like, (b) or like beer “BestBeer”

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

44CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)
Q(x) :- Likes(x, “BestBeer”)

RC:
Q(x)	=	[$y.	$z.	Frequents(x,	y)∧Serves(y,z)∧Likes(x,z)]					⋁ [Likes(x,	“BestBeer”)]



Example:	OR	in	Datalog
Find drinkers that (a) either frequent some bar that serves some beer 
they like, (b) or like beer “BestBeer”, (c) or, frequent bars that “Joe” 
frequents

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

45CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Datalog:
JoeFrequents(w)	:- Frequents(“Joe”,	w)
Q(x)	:- Frequents(x,	y),	Serves(y,z),	Likes(x,z)
Q(x)	:- Likes(x,	“BestBeer”)
Q(x)	:- Frequents(x,	w),	JoeFrequents(w)

RC:
Q(x)	=	[$y.	$z.	Frequents(x,	y)∧Serves(y,z)∧Likes(x,z)]			⋁ [Likes(x,	“BestBeer”)]								

⋁ [$w Frequents(x,	w)	∧ Frequents(“Joe”,	w)]

• To	specify	“OR”,	write	multiple	rules	with	the	same	“Head”
• Next:	terminology	for	Datalog

Check	yourself



• Each rule is of the form  Head :- Body

• Each variable in the head of each rule must appear in 
the body of the rule

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

46CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

JoeFrequents(w)	:- Frequents(“Joe”,	w)
Q(x)	:- Frequents(x,	y),	Serves(y,z),	Likes(x,z)
Q(x)	:- Likes(x,	“BestBeer”)
Q(x)	:- Frequents(x,	w),	JoeFrequents(w)

Four	rules

BodyHead

Datalog Rules

Atom

Variable



Termination	of	a	Datalog Program

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 47

Q. A	Datalog program	always	terminates	– why?



Unsafe/Safe	Datalog Rules

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 48

• What	is	the	problem	with	this	rule?
• What	should	this	rule	return?	

– names	of	all	drinkers	in	the	world?
– names	of	all	drinkers	in	the	USA?
– names	of	all	drinkers	in	Durham?

Find drinkers who like beer “BestBeer” Q(x) :- Likes(x, “BestBeer”)

Find drinkers who DO NOT like 
beer “BestBeer”

Q(x) :- ¬Likes(x, “BestBeer”)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Another	Problem	with	
Negation	in	Datalog Rules



Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

Find drinkers who like beer “BestBeer” Q(x) :- Likes(x, “BestBeer”)

Find drinkers who DO NOT like 
beer “BestBeer”

Q(x) :- ¬Likes(x, “BestBeer”)

Domain-dependency	is	bad
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

• What	is	the	problem	with	this	rule?
• Dependent	on	“domain”	of	drinkers

– domain-dependent
– infinite	answers	possible	too..

• keep	generating	“names”

– Unsafe	rule

Another	Problem	with	
Negation	in	Datalog Rules



Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 50

• Solution:
• Restrict	to	“active	domain”	of	drinkers	from	the	input	
Likes (or	Frequents)	relation
– “domain-independence”	– same	finite	answer	always

• Becomes	a	“safe	rule”

Find drinkers who like beer “BestBeer” Q(x) :- Likes(x, “BestBeer”)

Find drinkers who DO NOT like 
beer “BestBeer”

Q(x) :- ¬Likes(x, “BestBeer”)

Safe	Datalog Rules
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) :- Likes(x, y), ¬Likes(x, “BestBeer”)



Views

• A	view is	like	a	“virtual”	table
– Defined	by	a	query,	which	describes	how	to	
compute	the	view	contents	on	the	fly

– DBMS	stores	the	view	definition	query	instead	of	
view	contents

– Can	be	used	in	queries	just	like	a	regular	table

51Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Creating	and	dropping	views

• Example:	members	of	Jessica’s	Circle
– CREATE VIEW JessicaCircle AS

SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');

– Tables	used	in	defining	a	view	are	called	“base	tables”
• User and	Member above

• To	drop	a	view
– DROP VIEW JessicaCircle;

52

User(uid,	name,	pop)
Member(gid,	uid)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Using	views	in	queries

• Example:	find	the	average	popularity	of	members	in	
Jessica’s	Circle

– SELECT AVG(pop) FROM JessicaCircle;

– To	process	the	query,	replace	the	reference	to	the	view	by	its	
definition

– SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))

AS JessicaCircle;

53Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Why	use	views?

• To	hide	data	from	users
• To	hide	complexity	from	users

• Logical	data	independence
– If	applications	deal	with	views,	we	can	change	the	
underlying	schema	without	affecting	applications

• To	provide	a	uniform	interface	for	different	
implementations	or	sources

FReal	database	applications	use	tons	of	views

54Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Selinger’s algorithm	for	Lecture	12

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 55



Task	4:
Efficiently	searching	the	plan	space

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 56

Use	dynamic-programming	based	
Selinger’s algorithm

To	be	covered	in
Lecture 14 22-23



Heuristics	for	pruning	plan	space

• Apply	predicates	as	early	as	possible
• Avoid	plans	with	cross	products
• Only	left-deep	join	trees

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 57



Join	Trees
Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

(logical plan space)
• Several possible structure of the trees
• Each tree can have n! permutations of relations on leaves
(physical plan space)
• Different implementation and scanning of intermediate operators 

for each logical plan

R3 R2

R4
R1 R5

left-deep	join	tree
bushy	join	tree

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 58



Selinger	Algorithm

• Dynamic	Programming based
• Dynamic	Programming:

– General	algorithmic	paradigm
– Exploits	“principle	of	optimality”

• Useful	reading:	Chapter	16,	Introduction	to	Algorithms,
Cormen,	Leiserson,	Rivest

• Considers	the	search	space	of	left-deep	join	trees
– reduces	search	space	(only	one	structure)
– but	still	n!	permutations
– interacts	well	with	join	algos (esp.	NLJ)
– e.g.	might	not	need	to	write	tuples	to	disk	if	enough	
memory

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 59



Principle	of	Optimality

Optimal for “whole” made up from 
optimal for “parts”

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 60



Principle	of	Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

Suppose, 
this is an Optimal Plan
for joining R1…R5:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 61



Principle	of	Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5
Then, what can you say 
about this sub-plan?

This has to be the 
optimal plan for joining R3, R2, R4, R1

Suppose, 
this is an Optimal Plan
for joining R1…R5:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 62



Principle	of	Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

Suppose, 
this is an Optimal Plan
for joining R1…R5:This has to be the 

optimal plan for joining R3, R2, R4

Then, what can you say 
about this sub-plan?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 63

We	are	using	the
associativity	and	
commutativity	of	joins
(R	⨝ S)	⨝ T	=	R	⨝ (S	⨝ T)
R	⨝ S	=	S	⨝ R



Exploiting	Principle	of	Optimality

Query: R1        R2                …                 Rn

R3 R1

R2

R2 R3

R1

Optimal
for joining R1, R2, R3

Sub-Optimal
for joining R1, R2, R3

Both	are	giving	the	same	result	
R2	⨝ R3	⨝ R1	=	R3	⨝ R1	⨝ R2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 64



Exploiting	Principle	of	Optimality

R3 R1

R2

Ri

Rj
Leads to sub-Optimal
for joining R1,…,Rn

A sub-optimal sub-plan cannot lead to an
optimal plan

Suppose you chose
the sub-optimal one

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 65



Notation

OPT ( { R1, R2, R3 } ):

Cost of optimal plan to join R1,R2,R3

T ( { R1, R2, R3 } ): 

Number of tuples in R1       R2      R3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 66



Simple	Cost	Model

Cost (R         S)  =   T(R) + T(S) 

All other operators have 0 cost

Note: The simple cost model used for illustration only, 
it is not used in practice

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 67



Cost	Model	Example

R S

T

X

T(R) + T(S)

T(X) + T(T)

Total Cost:  T(R) + T(S) + T(T) + T(X)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 68



OPT ( { R1, R2, R3 } ): 

OPT ( { R2, R3 } )   + T ( { R2, R3 } ) + T(R1)

OPT ( { R1, R2 } )   + T ( { R1, R2 } ) + T(R3)

OPT ( { R1, R3 } )   + T ( { R1, R3 } ) + T(R2)

Min

Selinger Algorithm:

Note: Valid only for the simple cost model
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 69



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 70



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 71



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

e.g.	All	possible	permutations	of	R1,	R3,	R4	
have	been	considered

after	OPT({R1,	R3,	R4})	has	been	computed

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 72



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 73

Q.	How	to	optimally	compute	join	of	{R1,	R2,	R3,	R4}?

Ans:	First	optimally	join	{R1,	R3,	R4}	then	join	with	R2 as	inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 74

Q.	How	to	optimally	compute	join	of	{R1,	R3,	R4}?

Ans:	First	optimally	join	{R1,	R3},	then	join	with	R4 as	inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 75

Q.	How	to	optimally	compute	join	of	{R1,	R3}?

Ans:	First	optimally	join	{R3},	then	join	with	R1 as	inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 76

Q.	How	to	optimally	compute	join	of	{R3}?

Ans:	Single	relation	– so	optimally	scan	R3.



R2

R3

R4

R1

Selinger Algorithm:

Final optimal plan:

Query: R1        R2         R3         R4

NOTE	:	There	is	a	one-one	correspondence	between	the	permutation	(R3,	R1,	R4,	R2)
and	the	above	left	deep	plan

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 77



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 78

NOTE:	(*VERY	IMPORTANT*)
• This	is	*NOT*	done	by	top-down	recursive	calls.
• This	is	done	BOTTOM-UP	computing	the	optimal	cost	of	*all*	

nodes	in	this	lattice	only	once	(dynamic	programming).



More	on	Query	Optimizations

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 79

• See	the	survey	(on	course	website):
“An	Overview	of	Query	Optimization	in	Relational	
Systems”	by	Surajit Chaudhuri

• Covers	other	aspects	like	
– Pushing	group	by	before	joins
– Merging	views	and	nested	queries
– “Semi-join”-like	techniques	for	multi-block	queries	

• covered	in	distributed	databases
– Statistics	and	optimizations
– Starbust and	Volcano/Cascade	architecture,	etc


