
CompSci 516
Database	Systems

Lecture	3
More	SQL

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Announcements
• HW1	is	published	on	Sakai:

– Resources	->	HW	->	HW1	folder
– Due	on	09/20	(Thurs),	11:55	pm,	no	late	days
– Start	now!
– Submission	instructions	for	gradescope to	be	
updated	(will	be	notified	through	piazza)

• Your	piazza	and	sakai accounts	should	be	active
– if	not	on	piazza,	send	me	an	email

• Occasional	Pop	up	quizzes	will	start	
– Bring	a	laptop	in	class

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 2

Recap:	Lecture	2

• XML	overview
– differences	with	relational	model	and	
transformation

• SQL
– Creating/modifying	relations
– Specifying	integrity	constraints
– Key/candidate	key,	superkey,	primary	key,	foreign	
key

– Conceptual	evaluation	of	SQL	queries

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

Today’s	topic
• More	SQL

– joins
– group	bys and	aggregates
– nested	queries	
– NULLs
– views

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.

Joins

• Condition/Theta-Join
• Equi-Join
• Natural-Join
• (Left/Right/Full)	Outer-Join

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Condition/Theta	Join

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age >= 40

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Form	cross	product,	discard	rows	that	do	not	satisfy	the	condition

Equi Join

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age = 45

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

A	special	case	of	theta	join
Join	condition	only	has	equality	predicate	=	

Natural	Join

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S NATURAL JOIN Reserves R

sid sname rating age bid day
22 dustin 7 45 101 10/10/96
22 dustin 7 45 103 11/12/96
31 lubber 8 55 101 10/10/96
31 lubber 8 55 103 11/12/96
58 rusty 10 35 101 10/10/96
58 rusty 10 35 103 11/12/96

A	special	case	of	equi join
Equality	condition	on	ALL	common	predicates	(sid)
Duplicate	columns	are	eliminated

Outer	Join

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT S.sid, R. bid
FROM Sailors S LEFT OUTER JOIN Reserves R
ON S.sid=R.sid

Preserves	all	tuples	from	the	left	table	whether	or	not	there	is	a	match
if	no	match,	fill	attributes	from	right	with	null
Similarly	RIGHT/FULL	outer	join

sid bid
22 101
31 null
58 103

Expressions	and	Strings

• Illustrates	use	of	arithmetic	expressions	and	string	pattern	matching
• Find	triples	(of	ages	of	sailors	and	two	fields	defined	by	expressions)	

for	sailors	
– whose	names	begin	and	end	with	B	and	contain	at	least	three	characters

• LIKE is	used	for	string	matching.	`_’	stands	for	any	one	character	
and	`%’	stands	for	0	or	more	arbitrary	characters
– You	will	need	these	often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10

Find	sid’s of	sailors	who’ve	reserved	a	red	or a	
green	boat

• Assume	a	Boats	relation

• UNION:	Can	be	used	to	
compute	the	union	of	any	
two	union-compatible sets	of	
tuples
– can	themselves	be	the	result	of	

SQL	queries

• If	we	replace	OR by	AND in	the	
first	version,	what	do	we	get?

• Also	available:		EXCEPT (What	
do	we	get	if	we	replace	UNION
by	EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find	sid’s	of	sailors	who’ve	reserved	
a	red	and a	green	boat

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find	sid’s of	sailors	who’ve	reserved	
a	red	and a	green	boat

• INTERSECT:	Can	be	used	to	
compute	the	intersection	of	
any	two		union-compatible
sets	of	tuples.	
– Included	in	the	SQL/92	

standard,	but	some	systems	
don’t	support	it

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Key field!

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Nested	Queries

• A	very	powerful	feature	of	SQL:		
– a	WHERE/FROM/HAVING clause	can	itself	contain	an	SQL	query

• To	find	sailors	who’ve	not	reserved	#103,	use	NOT	IN.
• To	understand	semantics	of	nested	queries,	think	of	a	
nested	loops	evaluation
– For	each	Sailors	tuple,	check	the	qualification	by	computing	the	
subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

Sailors	(sid,	sname,	rating,	age)
Reserves(sid,	bid,	day)
Boats(bid,	bname,	color)

Nested	Queries	with	Correlation

• EXISTS is	another	set	comparison	operator,	like	IN
• Illustrates	why,	in	general,	subquery must	be	re-
computed	for	each	Sailors	tuple		

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15

Find names of sailors who’ve reserved boat #103:

Nested	Queries	with	Correlation

• If	UNIQUE is	used,	and	*	is	replaced	by	R.bid,	finds	
sailors	with	at	most	one	reservation	for	boat	#103
– UNIQUE checks	for	duplicate	tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16

Find names of sailors who’ve reserved boat #103
at most once:

More	on	Set-Comparison	Operators

• We’ve	already	seen	IN,	EXISTS	and	UNIQUE
• Can	also	use	NOT	IN,	NOT	EXISTS	and	NOT	UNIQUE.
• Also	available:		op ANY,	op ALL,		op IN

– where	op	:	>,	<,	=,	<=,	>=

• Find	sailors	whose	rating	is	greater	than	that	of	some	
sailor	called	Horatio
– similarly	ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

Aggregate	Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check	yourself:
What	do	these	queries	compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Motivation	for	Grouping

• So	far,	we’ve	applied	aggregate	operators	to	all	
(qualifying)	tuples
– Sometimes,	we	want	to	apply	them	to	each	of	several	groups	
of	tuples

• Consider:		Find	the	age	of	the	youngest	sailor	for	each	
rating	level
– In	general,	we	don’t	know	how	many	rating	levels	exist,	and	
what	the	rating	values	for	these	levels	are!

– Suppose	we	know	that	rating	values	go	from	1	to	10;	we	can	
write	10	queries	that	look	like	this	(need	to	replace	i by	num):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19

Queries	With	GROUP	BY	and	HAVING

• The	target-list	contains
– (i)	attribute	names		
– (ii)	terms	with	aggregate	operations	(e.g.,	MIN	(S.age))

• The	attribute	list	(i)	must	be	a	subset	of	grouping-list
– Intuitively,	each	answer	tuple	corresponds	to	a	group,	and	these	attributes	

must	have	a	single	value	per	group
– Here	a group	is	a	set	of	tuples	that	have	the	same	value	for	all	attributes	in	

grouping-list

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20

First	go	over	the	examples	in	the	following	slides
Then	come	back	to	this	slide	and	study	yourself

Conceptual	Evaluation
• The	cross-product	of	relation-list is	computed
• Tuples	that	fail	qualification are	discarded
• `Unnecessary’	fields	are	deleted
• The	remaining	tuples	are	partitioned	into	groups	by	the	value	of	

attributes	in	grouping-list
• The	group-qualification is	then	applied	to	eliminate	some	groups
• Expressions	in	group-qualification	must	have	a	single	value	per	

group
– In	effect,	an	attribute	in	group-qualification	that	is	not	an	argument	of	an	

aggregate	op	also	appears	in	grouping-list
– like	“…GROUP	BY	bid,	sid HAVING	bid	=	3”

• One	answer	tuple	is	generated	per	qualifying	group
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21

First	go	over	the	examples	in	the	following	slides
Then	come	back	to	this	slide	and	study	yourself

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	at	
least	2	such sailors.

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	at	
least	2	such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step	1:	Form	the	cross	product:	FROM	clause
(some	attributes	are	omitted	for	simplicity)

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	at	
least	2	such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step	2:	Apply	WHERE	clause

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	at	
least	2	such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step	3:	Apply	GROUP	BY	according	to	the	listed	attributes

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	at	
least	2	such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) >
1

Step	4:	Apply	HAVING	clause
The	group-qualification is	applied	to	eliminate	some	groups

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	at	
least	2	such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating minage
3 25.5
7 35.0
8 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step	5:	Apply	SELECT	clause
Apply	the	aggregate	operator
At	the	end,	one	tuple	per	group

Nulls	and	Views	in	SQL

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28

Null	Values
• Field	values	in	a	tuple	are	sometimes	

– unknown,	e.g.,	a	rating	has	not	been	assigned,	or	
– inapplicable, e.g.,	no	spouse’s	name
– SQL	provides	a	special	value	null for	such	situations.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29

Standard	Boolean	2-valued	logic

• True	=	1,	False	=	0
• Suppose	X	=	5

– (X	<	100)	AND	(X	>=	1)	is	T	∧ T	=	T
– (X	>	100)	OR	(X	>=	1)	is	F	∨ T	=	T
– (X	>	100)	AND	(X	>=	1)	is	F	∧ T	=	F
– NOT(X	=	5)	is	¬T	=	F

• Intuitively,
– T	=	1,	F	=	0
– For	V1,	V2	∈ {1,	0}
– V1	∧ V2	=	MIN	(V1,	V2)
– V1	∨ V2	=	MAX(V1,	V2)
– ¬(V1)	=	1	– V1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

2-valued	logic	does	not	work	for	nulls

• Suppose	rating	=	null,	X	=	5
• Is	rating>8	true	or	false?
• What	about	AND,	OR	and	NOT connectives?

– (rating	>	8)	AND	(X	=	5)?

• What	if	we	have	such	a	condition	in	the	
WHERE	clause?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31

3-Valued	Logic	For	Null

• TRUE	(=	1),	FALSE	(=	0),	UNKNOWN	(=	0.5)
– unknown	is	treated	as	0.5

• Now	you	can	apply	rules	from	2-valued	logic!
– For	V1,	V2	∈ {1,	0,	0.5}
– V1	∧ V2	=	MIN	(V1,	V2)
– V1	∨ V2	=	MAX(V1,	V2)
– ¬(V1)	=	1	– V1

• Therefore,	
– NOT	UNKNOWN	=	UNKNOWN
– UNKNOWN	OR	TRUE	=	TRUE
– UNKNOWN	AND	TRUE	=	UNKNOWN
– UNKNOWN	AND	FALSE	=	FALSE
– UNKNOWN	OR	FALSE	=	UNKNOWN

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 32

New	issues	for	Null
• The	presence	of	null complicates	many	issues.	E.g.:

– Special	operators	needed	to	check	if	value	IS/IS	NOT	NULL
– Be	careful!	
– “WHERE	X	=	NULL”	does	not	work!
– Need	to	write	“WHERE	X	IS	NULL”

• Meaning	of	constructs	must	be	defined	carefully
– e.g.,	WHERE	clause	eliminates	rows	that	don’t	evaluate	to	true
– So	not	only	FALSE,	but	UNKNOWNs	are	eliminated	too
– very	important	to	remember!

• But	NULL	allows	new	operators	(e.g.	outer	joins)

• Arithmetic	with	NULL
– all	of	+,	-,	*,	/	return	null	if	any	argument	is	null

• Can	force	”no	nulls” while	creating	a	table
– sname	char(20)	NOT	NULL
– primary	key	is	always	not	null
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 33

Aggregates	with	NULL

• What	do	you	get	for
• SELECT	count(*)	from	R1?
• SELECT	count(rating)	from	R1?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 34

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

Aggregates	with	NULL

• What	do	you	get	for
• SELECT	count(*)	from	R1?
• SELECT	count(rating)	from	R1?
• Ans:	3	for	both

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 35

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

Aggregates	with	NULL

• What	do	you	get	for
• SELECT	count(*)	from	R1?
• SELECT	count(rating)	from	R1?
• Ans:	3	for	both

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 36

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

• What	do	you	get	for
• SELECT	count(*)	from	R2?
• SELECT	count(rating)	from	R2?

sid sname rating age
22 dustin 7 45
31 lubber null 55
58 rusty 10 35

R2

Aggregates	with	NULL

• What	do	you	get	for
• SELECT	count(*)	from	R1?
• SELECT	count(rating)	from	R1?
• Ans:	3	for	both

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

• What	do	you	get	for
• SELECT	count(*)	from	R2?
• SELECT	count(rating)	from	R2?
• Ans:	First	3,	then	2

sid sname rating age
22 dustin 7 45
31 lubber null 55
58 rusty 10 35

R2

Aggregates	with	NULL

• COUNT,	SUM,	AVG,	MIN,	MAX	(with	or	without	DISTINCT)
– Discards	null	values	first
– Then	applies	the	aggregate
– Except	count(*)

• If	only	applied	to	null	values,	the	result	is	null

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 38

• SELECT	sum(rating)	from	R2?
• Ans:	17

sid sname rating age
22 dustin 7 45
31 lubber null 55
58 rusty 10 35

R2
• SELECT	sum(rating)	from	R3?
• Ans:	null

sid sname rating age
22 dustin null 45
31 lubber null 55
58 rusty null 35

R3

Views
• A	view	is	just	a	relation,	but	we	store	a	definition,	rather	than	

a	set	of	tuples
CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

• Views can be dropped using the DROP VIEW command

• Views and Security: Views can be used to present necessary information
(or a summary), while hiding details in underlying relation(s)

• the above view hides courses “cid” from E

• More on views later in the course

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39

Can	create	a	new	table	from	a	query	
on	other	tables	too

SELECT S.name, E.grade
INTO YoungActiveStudents
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 40

SELECT…		INTO....	FROM....	WHERE

“WITH”	clause	– very	useful!

• You	will	find	“WITH”	clause	very	useful!
WITH Temp1 AS

(SELECT ….. ..),
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can	simplify	complex	nested	queries

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 41

Overview:	General	Constraints
• Useful	when	more	general	ICs	

than	keys	are	involved

• There	are	also	ASSERTIONS to	
specify	constraints	that	span	
across	multiple	tables

• There	are	TRIGGERS	too	:	
procedure	that	starts	
automatically	if	specified	changes	
occur	to	the	DBMS	

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Triggers	
• Trigger:	procedure	that	starts	automatically	if	specified	

changes	occur	to	the	DBMS
• Three	parts:

– Event	(activates	the	trigger)
– Condition	(tests	whether	the	triggers	should	run)
– Action	(what	happens	if	the	trigger	runs)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 43

CREATE	TRIGGER	youngSailorUpdate
AFTER	INSERT	ON	SAILORS

REFERENCING	NEW	TABLE	NewSailors
FOR	EACH	STATEMENT

INSERT
INTO	YoungSailors(sid,	name,	age,	rating)
SELECT	sid,	name,	age,	rating
FROM	NewSailors N
WHERE	N.age <=	18

Only	FYI,	not	covered	in	detail

Summary

• SQL	has	a	huge	number	of	constructs	and	possibilities
– You	need	to	learn	and	practice	it	on	your	own
– Given	a	problem,	you	should	be	able	to	write	a	SQL	query	and	verify	

whether	a	given	one	is	correct

• Pay	attention	to	NULLs

• Can	limit	answers	using	“LIMIT”	or	“TOP”	clauses
– e.g.	to	output	TOP	20	results	according	to	an	aggregate
– also	can	sort	using	ASC	or	DESC	keywords

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 44

Additional	Examples
(check	yourself)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 45

Rewriting	INTERSECT Queries	Using	IN

• Similarly,	EXCEPT queries	re-written	using	NOT	IN.		
• To	find	names	(not	sid’s)	of	Sailors	who’ve	reserved	both	
red	and	green	boats,	just	replace	S.sid by	S.sname in	SELECT
clause

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 46

“Division”	in	SQL

• Option	1:
• Option	2:	Let’s	do	it	the	hard	way,	without	

EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

((SELECT B.bid
FROM Boats B)

EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B...

…a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

More	in	RA

option	2

option	1

…without ...

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find	name	and	age	of	the	oldest	sailor(s)

• The	first	query	is	illegal!
– Recall	the	semantic	of		

GROUP	BY

• The	third	query	is	
equivalent	to	the	second	
query
– and	is	allowed	in	the	
SQL/92	standard,	but	is	not	
supported	in	some	systems

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

⛔

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	rating	with	
at	least	2	such sailors	and	with	every sailor	under	60.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

rating minage
7 35.0
8 25.5

What	is	the	result	of	
changing	EVERY	to
ANY?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

SELECT S.rating, MIN (S.age)
AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1 AND	
EVERY	(S.age <=60)

Find	age	of	the	youngest	sailor	with	age	>=	18,	for	each	
rating	with	at	least	2	sailors	between	18	and	60.

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 50

For	each	red	boat,	find	the	number	of	
reservations	for	this	boat

• Grouping	over	a	join	of	three	relations.
• What	do	we	get	if	we	remove	B.color=‘red’	from	the	

WHERE	clause	and	add	a	HAVING clause	with	this	
condition?

• What	if	we	drop	Sailors	and	the	condition	involving	
S.sid?

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 51

