
9/6/18

1

CompSci 516
Database	Systems
(Incomplete	Notes)

Lecture	4
Relational	Algebra	

and	
Relational	Calculus

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Announcements
• Reminder:	HW1

– Sakai	:	Resources	->	HW	->	HW1	folder
– Due	on	09/20	(Thurs),	11:55	pm,	no	late	days
– Start	now!
– Submission	instructions	for	gradescope to	be	
updated	(will	be	notified	through	piazza)

• Your	piazza	and	sakai accounts	should	be	active
– if	not	on	piazza,	send	me	an	email

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 2

Recap:	SQL	-- Lecture	2/3

• Creating/modifying	relations
• Specifying	integrity	constraints
• Key/candidate	key,	superkey,	primary	key,	foreign	key
• Conceptual	evaluation	of	SQL	queries
• Joins
• Group	bys and	aggregates
• Nested	queries	
• NULLs
• Views

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

Today’s	topics

• Relational	Algebra	(RA)	and	Relational	
Calculus	(RC)

• Reading	material
– [RG]	Chapter	4	(RA,	RC)
– [GUW]	Chapters	2.4,	5.1,	5.2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.

Relational	Query	Languages

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5

Relational	Query	Languages

• Query	languages:		Allow	manipulation	and	
retrieval	of	data	from	a	database

• Relational	model	supports	simple,	powerful	QLs:
– Strong	formal	foundation	based	on	logic
– Allows	for	much	optimization

• Query	Languages	!= programming	languages
– QLs	not	intended	to	be	used	for	complex	calculations
– QLs	support	easy,	efficient	access	to	large	data	sets

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

9/6/18

2

Formal	Relational	Query	Languages

• Two	“mathematical”	Query	Languages	form	the	
basis	for	“real”	languages	(e.g.	SQL),	and	for	
implementation:
– Relational	Algebra:		More	operational,	very	useful	
for	representing	execution	plans

– Relational	Calculus:			Lets	users	describe	what	they	
want,	rather	than	how	to	compute	it		(Non-
operational,	declarative,	or	procedural)

• Note:	Declarative	(RC,	SQL)	vs.	Operational	(RA)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7

Preliminaries	(recap)
• A	query	is	applied	to	relation	instances,	and	the	
result	of	a	query	is	also	a	relation	instance.
– Schemas	of	input	relations	for	a	query	are	fixed

• query	will	run	regardless	of	instance

– The	schema	for	the	result	of	a	given	query	is	also	fixed
• Determined	by	definition	of	query	language	constructs

• Positional	vs.	named-field	notation:		
– Positional	notation	easier	for	formal	definitions,	named-
field	notation	more	readable

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

Example	Schema	and	Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1 S2

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

Logic	Notations

• $ There	exists
• " For	all
• ∧ Logical	AND
• ∨ Logical	OR
• ¬				NOT
• ⇒ Implies

Relational	Algebra	(RA)

Relational	Algebra

• Takes	one	or	more	relations	as	input,	and	produces	a	
relation	as	output
– operator
– operand
– semantic
– so	an	algebra!

• Since	each	operation	returns	a	relation,	operations	
can	be	composed	
– Algebra	is	“closed”

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

9/6/18

3

Relational	Algebra
• Basic	operations:

– Selection			(σ)		Selects	a	subset	of	rows	from	relation
– Projection	(π)	Deletes	unwanted	columns	from	relation.
– Cross-product	(x)	Allows	us	to	combine	two	relations.
– Set-difference	(-)	Tuples	in	reln.	1,	but	not	in	reln.	2.
– Union	(∪)	Tuples	in	reln.	1	or	in	reln.	2.

• Additional	operations:
– Intersection	(∩)
– join	⨝
– division(/)
– renaming	(ρ)		
– Not	essential,	but	(very)	useful.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13

Projection

p sname rating S, ()2

page S()2

• Deletes	attributes	that	are	not	in	
projection	list.

• Schema of	result	contains	exactly	
the	fields	in	the	projection	list,	with	
the	same	names	that	they	had	in	the	
(only)	input	relation.

• Projection	operator	has	to	eliminate	
duplicates		(Why)

– Note:	real	systems	typically	don’t	do	
duplicate	elimination	unless	the	user	
explicitly	asks	for	it	(performance)

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

10Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Selection

s rating S>8 2()

• Selects	rows	that	satisfy	
selection	condition

• No	duplicates	in	result.	
Why?

• Schema	of	result	identical	
to	schema	of	(only)	input	
relation

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

11Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Composition	of	Operators

• Result	relation	can	be	the	
input	for	another	
relational	algebra	
operation		
– Operator	composition s rating S>8 2()

p ssname rating rating S, (())
>8 2

Union,	Intersection,	Set-Difference

• All	of	these	operations	take	two	
input	relations,	which	must	be	
union-compatible:
– Same	number	of	fields.
– `Corresponding’	fields	have	
the	same	type

– same	schema	as	the	inputs

S S1 2È

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 12

Union,	Intersection,	Set-Difference

• Note:	no	duplicate
– “Set	semantic”
– SQL:	UNION
– SQL	allows	“bag	
semantic”	as	well:	
UNION	ALL

S S1 2È

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 12

9/6/18

4

Union,	Intersection,	Set-Difference

S S1 2ÇS S1 2-

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 13

Cross-Product
• Each	row	of	S1	is	paired	with	each	row	of	R.
• Result	schema	has	one	field	per	field	of	S1	and	R,	with	field	

names	`inherited’	if	possible.
– Conflict:		Both	S1	and	R	have	a	field	called	sid.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

Renaming	Operator	⍴

§In	general,	can	use	⍴(<Temp>,	<RA-expression>)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21

(⍴sid →	sid1	S1)	⨉ (⍴sid →	sid1	R1)
or

⍴(C(1→	sid1,	5	→	sid2),		S1⨉ R1)	
C	is	the
new	relation
name

Joins

• Result	schema	same	as	that	of	cross-product.
• Fewer	tuples	than	cross-product,	might	be	able	to	

compute	more	efficiently

R c S c R S!" = ´s ()

S RS sid R sid1 11 1!" . .<

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22

Find	names	of	sailors	who’ve	reserved	boat	
#103

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

Find	names	of	sailors	who’ve	reserved	boat	
#103

• Solution	1:	

• Solution	2:
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

9/6/18

5

Expressing	an	RA	expression	as	a	Tree

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

p ssname bid serves Sailors((Re))=103 !"
Sailors Reserves

σbid=103

⨝sid =sid

πsname

Also	called	a	
logical	query	plan

Find	sailors	who’ve	reserved	a	red	or	a	green	boat

• Can	identify	all	red	or	green	boats,	then	find	sailors	who’ve	reserved	one	of	
these	boats:

Can also define Tempboats using union
Try the “AND” version yourself

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

Use	of	rename	operation

What	about	aggregates?

• Extended	relational	algebra	
• 𝝲age,	avg(rating)	→ avgr Sailors
• Also	extended	to	“bag	semantic”:	allow	duplicates

– Take	into	account	cardinality
– R	and	S	have	tuple	t	resp.	m	and	n	times
– R	∪ S	has	t	m+n times
– R	∩	S	has	t	min(m,	n)	times
– R	– S	has	t	max(0,	m-n)	times
– sorting(τ),	duplicate	removal	(ẟ)	operators

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

Relational	Calculus	(RC)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28

Relational	Calculus
• RA	is	procedural

– πA(σA=a R)	and	σA=a (πA	R)	are	equivalent	but	different	expressions

• RC
– non-procedural	and	declarative
– describes	a	set	of	answers	without	being	explicit	about	how	they	

should	be	computed

• TRC	(tuple	relational	calculus)
– variables	take	tuples	as	values	
– we	will	primarily	do	TRC

• DRC	(domain	relational	calculus)
– variables	range	over	field	values

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29

TRC:	example

• Find	the	name	and	age	of	all	sailors	with	a	rating	above	7

{P	|	∃ S	ϵ	Sailors	(S.rating >	7	⋀ P.sname =	S.sname ⋀ P.age =	S.age)}	

• P	is	a	tuple	variable	
– with	exactly	two	fields	sname and	age	(schema	of	the	output	relation)
– P.sname =	S.sname ⋀ P.age =	S.age gives	values	to	the	fields	of	an	answer	

tuple

• Use	parentheses,	∀ ∃ ⋁ ⋀ >			<				=	 ≠	 ¬				etc as	necessary
• A	⇒ B	is	very	useful	too

– next	slide
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

$ There	exists

9/6/18

6

A	⇒ B

• A	“implies”	B
• Equivalently,	if	A	is	true,	B	must	be	true
• Equivalently,	¬	A	⋁ B,	i.e.

– either	A	is	false	(then	B	can	be	anything)	
– otherwise	(i.e.	A	is	true)	B	must	be	true

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31

Useful	Logical	Equivalences

• "x	P(x)	 =				¬$x	 [¬P(x)]

• ¬(P∨Q)	 =					¬	P∧ ¬	Q
• ¬(P∧ Q)	 =					¬	P∨ ¬	Q

– Similarly,	¬(¬P∨Q)	=	P∧ ¬	Q	etc.

• A	Þ B					=						¬	A∨ B

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 32

$ There	exists
" For	all
∧ Logical	AND
∨ Logical	OR
¬				 NOT

de	Morgan’s	laws

TRC:	example

• Find	the	names	of	sailors	who	have	reserved	at	least	two	boats

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 33

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

TRC:	example

• Find	the	names	of	sailors	who	have	reserved	at	least	two	boats

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 34

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

TRC:	example

• Find	the	names	of	sailors	who	have	reserved	all	boats
• Called	the	“Division”	operation

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 35

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

TRC:	example

• Find	the	names	of	sailors	who	have	reserved	all	boats
• Division	operation	in	RA!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 36

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

9/6/18

7

TRC:	example

• Find	the	names	of	sailors	who	have	reserved	all	red boats

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

How	will	you	change	the	previous	TRC	expression?

TRC:	example

• Find	the	names	of	sailors	who	have	reserved	all	red boats

Recall	that	A	⇒ B	is	logically	equivalent	to	¬	A	⋁ B
so	⇒ can	be	avoided,	but	it	is	cleaner	and	more	intuitive

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 38

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

DRC:	example

• Find	the	name	and	age	of	all	sailors	with	a	rating	above	7

TRC:
{P	|	∃ S	ϵ	Sailors	(S.rating >	7	⋀ P.name =	S.name ⋀ P.age =	S.age)}	

DRC:
{<N,	A>	|	∃ <I,	N,	T,	A>	ϵ	Sailors	⋀ T	>	7}

• Variables	are	now	domain	variables
• We	will	use	use	TRC

– both	are	equivalent
• Another	option	to	write	coming	soon!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

More	Examples:	RC

• The	famous	“Drinker-Beer-Bar”	example!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 40

Acknowledgement:	examples	and	slides	by	Profs.	Balazinska
and	Suciu,	and	the	[GUW]	book

UNDERSTAND	THE	DIFFERENCE	IN	ANSWERS	
FOR	ALL	FOUR	DRINKERS

Drinker	Category	1

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

41CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Drinker	Category	1

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

a shortcut for
{x | $Y ϵ Frequents Z ϵ Serves W ϵ Likes (T.drinker = x.drinker∧ T.bar =
Z.bar∧ W.beer = ……}

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

42CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

The	difference	is	that	in	the	first	one,	one	variable	=	one	attribute
in	the	second	one,	one	variable	=	one	tuple	(Tuple	RC)
Both	are	equivalent	and	feel	free	to	use	the	one	that	is	convenient	to	you

9/6/18

8

Drinker	Category	2

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

43CompSci	516:	Database	Systems

Q(x) = …

Duke	CS,	Fall	2018

Drinker	Category	2

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

44CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Drinker	Category	3

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

45CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Drinker	Category	3

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

46CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Drinker	Category	4

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

47CompSci	516:	Database	SystemsDuke	CS,	Fall	2018

Drinker	Category	4

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

48Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

9/6/18

9

Why	should	we	care	about	RC
• RC	is	declarative,	like	SQL,	and	unlike	RA	(which	is	

operational)
• Gives	foundation	of	database	queries	in	first-order	

logic
– you	cannot	express	all	aggregates	in	RC,	e.g.	cardinality	of	
a	relation	or	sum	(possible	in	extended	RA	and	SQL)

– still	can	express	conditions	like	“at	least	two	tuples”	(or	any	
constant)

• RC	expression	may	be	much	simpler	than	SQL	queries
– and	easier	to	check	for	correctness	than	SQL
– power	to	use	" and Þ
– then you can systematically go to a “correct” SQL

query

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

From	RC	to	SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

CompSci	516:	Database	Systems 50

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2018

From	RC	to	SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ ¬$z.(Serves(z,y) ∧ ¬Frequents(x,z))

CompSci	516:	Database	Systems 51

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º Q(x) = $y. Likes(x, y)∧"z.(¬ Serves(z,y) ∨ Frequents(x,z))

Duke	CS,	Fall	2018

From	RC	to	SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT *
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))

CompSci	516:	Database	Systems 52

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2018

Q(x) = $y. Likes(x, y) ∧¬ $z.(Serves(z,y)∧¬Frequents(x,z))

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

We	will	see	a	
“methodical	and	correct”
translation	trough	
“safe	queries”
in	Datalog

Summary

• You	learnt	three	query	languages	for	the	Relational	DB	model
– SQL
– RA
– RC

• All	have	their	own	purposes

• You	should	be	able	to	write	a	query	in	all	three	languages	and	
convert	from	one	to	another
– However,	you	have	to	be	careful,	not	all	“valid”	expressions	in	one	may	

be	expressed	in	another
– {S	|	¬	(S	ϵ	Sailors)}	– infinitely	many	tuples	– an	“unsafe”	query
– More	when	we	do	“Datalog”,	also	see	Ch.	4.4	in	[RG]

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 53

