
CompSci 516
Database	Systems

Lecture	5
Design	Theory	and
Normalization

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Where	are	we	now?

We	learnt
üRelational	Model	
and	Query	
Languages
üSQL,	RA,	RC
üPostgres	(DBMS)
üXML	(overview)
§ HW1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 2

Next

• Database	Normalization
– (for	good	schema	design)



Announcements
• No	class	or	office	hour	on	Thursday
– Classes	are	canceled	due	to	Hurricane	alert
–Make	up	classe/office	hour	to	be	announced	later

• Reminder:	HW1
– Sakai	:	Resources	->	HW	->	HW1	folder
– Due	on	09/20	(Thurs),	11:55	pm,	no	late	days
– Start	now!
– Submission	instructions	for	gradescope are	
updated	on	piazza

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3



Reading	Material

• Database	normalization
– [RG]	Chapter	19.1	to	19.5,	19.6.1,	19.8	(overview)
– [GUW]	Chapter	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Acknowledgement:	
• The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.
• Some	slides	have	been	adapted	from	slides	by	
Profs.	Magda	Balazinska,	Dan	Suciu,	and	Jun	Yang



What	will	we	learn?

• What	goes	wrong	if	we	have	redundant	info	in	
a	database?

• Why	and	how	should	you	refine	a	schema?
• Functional	Dependencies	– a	new	kind	of	
integrity	constraints	(IC)

• Normal	Forms
• How	to	obtain	those	normal	forms

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5



Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

The	list	of	hourly	employees	in	an	organization

• key	=	SSN



Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7

The	list	of	hourly	employees	in	an	organization

• key	=	SSN
• Suppose	for	a	given	rating,	there	is	only	one	hourly_wage value
• Redundancy	in	the	table	
• Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

The	list	of	hourly	employees	in	an	organization

1. Redundant	storage:
– Some	information	is	stored	repeatedly
– The	rating	value	8	corresponds	to	hourly_wage 10,	which	is	stored	three	times

Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10	→	9 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9

The	list	of	hourly	employees	in	an	organization

2. Update	anomalies
– If	one	copy	of	data	is	updated,	an	inconsistency	is	created	unless	all	copies	are	similarly	

updated
– Suppose	you	update	the	hourly_wage value	in	the	first	tuple	using	UPDATE	statement	in	

SQL	-- inconsistency

Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10

The	list	of	hourly	employees	in	an	organization

3. Insertion	anomalies:
– It	may	not	be	possible	to	store	certain	information	unless	some	other,	unrelated	info	is	

stored	as	well
– We	cannot	insert	a	tuple	for	an	employee	unless	we	know	the	hourly	wage	for	the	

employee’s	rating	value

Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11

The	list	of	hourly	employees	in	an	organization

4. Deletion	anomalies:
– It	may	not	be	possible	delete	certain	information	without	losing	some	other	information	

as	well
– If	we	delete	all	tuples	with	a	given	rating	value	(Attishoo,	Smiley,	Madayan),	we	lose	the	

association	between	that	rating	value	and	its	hourly_wage value

Why	is	redundancy	bad?



Nulls	may	or	may	not	help

• Does	not	help	redundant	storage	or	update	anomalies
• May	help	insertion	and	deletion	anomalies

– can	insert	a	tuple	with	null	value	in	the	hourly_wage field
– but	cannot	record	hourly_wage for	a	rating	unless	there	is	such	an	

employee	(SSN	cannot	be	null)	– same	for	deletion
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40



Summary:	Redundancy

Therefore,
• Redundancy	arises	when	the	schema	forces	an	association	

between	attributes	that	is	“not	natural”
• We	want	schemas	that	do	not	permit	redundancy

– at	least	identify	schemas	that	allow	redundancy	to	make	an	informed	
decision	(e.g.	for	performance	reasons)

• Null	value	may	or	may	not	help

• Solution?
– decomposition	of	schema

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

Decomposition

ssn (S) name	(N) lot	
(L)

rating	
(R)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 40
222-22-2222 Smiley 22 8 30
333-33-3333 Smethurst 35 5 30
444-44-4444 Guldu 35 5 32
555-55-5555 Madayan 35 8 40

rating hourly
_wage

8 10

5 7



Decompositions	should	be	used	judiciously

1. Do	we	need	to	decompose	a	relation?
– Several	normal	forms
– If	a	relation	is	not	in	one	of	them,	may	need	to	

decompose	further

2. What	are	the	problems	with	decomposition?
– Lossless	joins	(soon)
– Performance	issues	-- decomposition	may	both
• help	performance	(for	updates,	some	queries	accessing	

part	of	data),	or
• hurt	performance	(new	joins	may	be	needed	for	some	

queries)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15



Functional	Dependencies	(FDs)
• A	functional	dependency (FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	an	FD	here?



Functional	Dependencies	(FDs)
• A	functional	dependency	(FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	an	FD	here?

AB	→	C

Note	that,	AB	is	not	a	key

not	a	correct	question	though..	see	next	slide!



Functional	Dependencies	(FDs)

• An	FD	is	a	statement	about	all allowable	
relations
– Must	be	identified	based	on	semantics	of	application
– Given	some	allowable	instance	r1 of	R,	we	can	check	
if	it	violates some	FD	f,	but	we	cannot	tell	if	f holds	
over	R

• K	is	a	candidate	key	for	R	means	that	K	→R
– denoting	R	=	all	attributes	of	R	too
– However,	S →R	does	not	require	S to	be	minimal
– e.g.	S	can	be	a	superkey

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18



Example

• Consider	relation	obtained	from	Hourly_Emps:
– Hourly_Emps (ssn,	name,	lot,	rating,	hourly_wage,	hours_worked)

• Notation:		We	will	denote	a relation	schema	by	listing	the	
attributes:			SNLRWH
– Basically	the	set of	attributes	{S,N,L,R,W,H}
– here	first	letter	of	each	attribute

• FDs	on	Hourly_Emps:
– ssn is	the	key:				S →	SNLRWH	
– rating	determines	hourly_wages:				R	→ W

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19



Armstrong’s	Axioms

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

Apply	these	rules	on
AB	→	C	and	check



Armstrong’s	Axioms

• These	are	sound and	complete inference	rules	for	FDs
– sound:	then	only	generate	FDs	in	F+ for	F
– complete:	by	repeated	application	of	these	rules,	all	FDs	in	F+
will	be	generated

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y	
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z



Additional	Rules

• Follow	from	Armstrong’s	Axioms

• Union:			If	X	→	Y		and		X	→ Z,			then		X	→ YZ
• Decomposition:			If	X	→ YZ,			then		X	→ Y		and		X	→ Z

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

A	→	B,	A	→	C
A	→	BC

A	→	BC
A	→	B,	A	→	C



Closure	of	a	set	of	FDs

• Given	some	FDs,	we	can	usually	infer	additional	FDs:
– SSN	→	DEPT,	and	DEPT	→ LOT	implies	SSN	→	LOT

• An	FD	f is	implied	by	a	set	of	FDs	F if	f holds	whenever	
all	FDs	in	F hold.

• F+

=	closure	of	F	is	the	set	of	all	FDs	that	are	implied	by	F

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23



To	check	if	an	FD	belongs	to	a	closure

• Computing	the	closure	of	a	set	of	FDs	can	be	expensive
– Size	of	closure	can	be	exponential	in	#attributes

• Typically,	we	just	want	to	check	if	a	given	FD	X	→ Y	is	in	
the	closure	of	a	set	of	FDs	F

• No	need	to	compute	F+

1. Compute	attribute	closure	of	X	(denoted	X+)	wrt F:
– Set	of	all	attributes	A	such	that	X	→	A	is	in	F+

2. Check	if	Y	is	in	X+

Duke	CS,	Fall	2018 CompSci 516:	Database	Systems 24



Computing	Attribute	Closure

Algorithm:
• closure	=	X
• Repeat	until	no	change

– if	there	is	an	FD	U	→	V	in	F	such	that	U	⊆
closure,	then	closure	=	closure	∪ V	

• Does	F	=	{A	→	B,		B	→	C,		C	D	→ E	}		imply		A	→
E?
– i.e,		is		A	→	E		in	the	closure	F+?		Equivalently,	is	E	in	
A+?	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25



Normal	Forms	

• Question:	given	a	schema,	how	to	decide	whether	any	schema	
refinement	is	needed	at	all?

• If	a	relation	is	in	a	certain	normal	forms,	it	is	known	that	
certain	kinds	of	problems	are	avoided/minimized

• Helps	us	decide	whether	decomposing	the	relation	is	
something	we	want	to	do

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26



FDs	play	a	role	in	detecting	redundancy

Example
• Consider	a	relation	R	with	3	attributes,	ABC	

– No	FDs	hold:			There	is	no	redundancy	here	– no	decomposition	
needed

– Given	A	→ B:			Several	tuples	could	have	the	same	A	value,	and	
if	so,	they’ll	all	have	the	same	B	value	– redundancy	–
decomposition	may	be	needed	if	A	is	not	a	key

• Intuitive	idea:
– if	there	is	any	non-key	dependency,	e.g.	A	→	B,	
decompose!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27



Normal	Forms

R	is	in	4NF
⇒ R	is	in	BCNF
⇒ R	is	in	3NF
⇒ R	is	in	2NF		(a	historical	one)
⇒ R	is	in	1NF	(every	field	has	atomic	
values)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28

BCNF

3NF

2NF

1NF

Only	BCNF	and	4NF	are	covered	in	the	class

4NF



Boyce-Codd	Normal	Form		(BCNF)

• Relation	R	with	FDs	F is	in	BCNF if,	for	all	X	→
A		in	F
– A			ϵ			X			(called	a	trivial FD),	or
– X	contains	a	key	for	R

• i.e.	X	is	a	superkey

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29



Decomposition

• Eliminates	redundancy
• To	get	back	to	the	original	relation:

30

⋈

uid uname twitterid gid fromDate

142 Bart @BartJSimpson dps 1987-04-19

123 Milhouse @MilhouseVan_ gov 1989-12-17

857 Lisa @lisasimpson abc 1987-04-19

857 Lisa @lisasimpson gov 1988-09-01

456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

… … … … …

uid uname twitterid

142 Bart @BartJSimpson

123 Milhouse @MilhouseVan_

857 Lisa @lisasimpson

456 Ralph @ralphwiggum

… … …

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …

(on	twitter)

• User	id
• user	name
• Twitter	id
• Group	id
• Joining	Date	

(to	a	group)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



uid twitterid

142 @BartJSimpson

123 @MilhouseVan_

857 @lisasimpson

456 @ralphwiggum

… …

uid uname

142 Bart

123 Milhouse

857 Lisa

456 Ralph

… …

Unnecessary	decomposition

• Fine:	join	returns	the	original	relation
• Unnecessary:	no	redundancy	is	removed;	schema	is	more	

complicated	(and	uid is	stored	twice!)
31

uid uname twitterid

142 Bart @BartJSimpson

123 Milhouse @MilhouseVan_

857 Lisa @lisasimpson

456 Ralph @ralphwiggum

… … …

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



uid fromDate

142 1987-04-19

123 1989-12-17

857 1987-04-19

857 1988-09-01

456 1991-04-25

456 1992-09-01

… …

Bad	decomposition

• Association	between	gid and	fromDate is	lost
• Join	returns	more	rows	than	the	original	relation

32

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …
uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Lossless	join	decomposition

• Decompose	relation	𝑅 into	relations	𝑆 and	𝑇
– 𝑎𝑡𝑡𝑟𝑠 𝑅 = 𝑎𝑡𝑡𝑟𝑠 𝑆 ∪ 𝑎𝑡𝑡𝑟𝑠 𝑇
– 𝑆 = 𝜋,--./ 0 𝑅
– 𝑇 = 𝜋,--./ 1 𝑅

• The	decomposition	is	a	lossless	join	decomposition	if,	given	
known	constraints	such	as	FD’s,	we	can	guarantee	that	𝑅 =
𝑆 ⋈ 𝑇

• 𝑅 ⊆ 𝑆 ⋈ 𝑇 or	𝑅 ⊇ 𝑆 ⋈ 𝑇 ?

• Any	decomposition	gives	𝑅 ⊆ 𝑆 ⋈ 𝑇 (why?)
– A	lossy decomposition	is	one	with	𝑅 ⊂ 𝑆 ⋈ 𝑇

33Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1988-09-01

857 gov 1987-04-19

456 abc 1991-04-25

456 gov 1992-09-01

… … …

Loss?	But	I	got	more	rows!

• “Loss”	refers	not	to	the	loss	of	tuples,	but	to	the	
loss	of	information
– Or,	the	ability	to	distinguish	different	original	relations

34

No	way	to	tell
which	is	the	original	relation

uid fromDate

142 1987-04-19

123 1989-12-17

857 1987-04-19

857 1988-09-01

456 1991-04-25

456 1992-09-01

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



BCNF	decomposition	algorithm

• Find	a	BCNF	violation
– That	is,	a	non-trivial	FD	𝑋 → 𝑌 in	𝑅 where	𝑋 is	not	a	
super	key	of	𝑅

• Decompose	𝑅 into	𝑅8 and	𝑅9,	where
– 𝑅8 has	attributes	𝑋 ∪ 𝑌
– 𝑅9 has	attributes	𝑋 ∪ 𝑍,	where	𝑍 contains	all	
attributes	of	𝑅 that	are	in	neither	𝑋 nor	𝑌

• Repeat	until	all	relations	are	in	BCNF

• Also	gives	a	lossless	decomposition!

35Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



BCNF	decomposition	example	- 1

• CSJDPQV,		key	C,		F	=	{JP	→ C,		SD	→ P,			J	→ S}
– To	deal	with	SD	→	P,	decompose	into		SDP,	CSJDQV.
– To	deal	with	J	→ S,	decompose	CSJDQV	into	JS	and	CJDQV

• Is	JP	→ C	a	violation	of	BCNF?

• Note:
– several	dependencies	may	cause	violation	of	BCNF		
– The	order	in	which	we	pick	them	may	lead	to	very	different	sets	of	

relations
– there	may	be	multiple	correct	decompositions	(can	pick	J	→ S	first)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 36



BCNF	decomposition	example	- 2

37

UserJoinsGroup (uid,	uname,	twitterid,	gid,	fromDate)

uid→ uname,	twitterid
twitterid→ uid
uid,	gid→ fromDate

BCNF	violation:	uid→ uname,	twitterid

User (uid,	uname,	twitterid) Member	(uid,	gid,	fromDate)

BCNF
BCNF

uid→ uname,	twitterid
twitterid→ uid

uid,	gid→ fromDate

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



38

UserJoinsGroup (uid,	uname,	twitterid,	gid,	fromDate)

uid→ uname,	twitterid
twitterid→ uid
uid,	gid→ fromDate

BCNF	violation:	twitterid→ uid

UserId (twitterid,	uid)

Member	(twitterid,	gid,	fromDate)

BCNF

BCNF

twitterid→ uname
twitterid,	gid→ fromDate

UserJoinsGroup’ (twitterid,	uname,	gid,	fromDate)

BCNF	violation:	twitterid→ uname

UserName (twitterid,	uname)
BCNF

apply	Armstrong’s	
axioms	and	rules!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

BCNF	decomposition	example	- 3



Recap

• Functional	dependencies:	a	generalization	of	the	
key	concept

• Non-key	functional	dependencies:	a	source	of	
redundancy

• BCNF	decomposition:	a	method	for	removing	
redundancies
– BCNF	decomposition	is	a	lossless	join	decomposition	

• BCNF:	schema	in	this	normal	form	has	no	
redundancy	due	to	FD’s

39Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



BCNF	=	no	redundancy?

• User (uid,	gid,	place)
– A	user	can	belong	to	multiple	groups
– A	user	can	register	places	she’s	visited
– Groups	and	places	have	nothing	to	do	with	other
– FD’s?

• None
– BCNF?

• Yes
– Redundancies?

• Tons!

40

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Multivalued	dependencies

• A	multivalued	dependency	(MVD)	has	the	
form
𝑋 ↠ 𝑌,	where	𝑋 and	𝑌 are	sets	of	attributes	
in	a	relation	𝑅

• 𝑋 ↠ 𝑌 means	that	whenever	
two	rows	in	𝑅 agree	on	all	the	
attributes	of	𝑋,	then	we	can	
swap	their	𝑌 components	and	
get	two	rows	that	are	also	in	𝑅

41

𝑿 𝒀 𝒁
𝑎 𝑏8 𝑐8
𝑎 𝑏9 𝑐9
… … …

𝑿 𝒀 𝒁
𝑎 𝑏8 𝑐8
𝑎 𝑏9 𝑐9
𝑎 𝑏9 𝑐8
𝑎 𝑏8 𝑐9
… … …

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



MVD	examples

User	(uid,	gid,	place)
• uid↠ gid
• uid↠ place
– Intuition:	given	uid,	attributes	gid and	place	are	
“independent”

• uid,	gid↠ place
– Trivial:	LHS	∪ RHS	=	all	attributes	of	𝑅

• uid,	gid↠ uid
– Trivial:	LHS	⊇ RHS

42Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Complete	MVD	+	FD	rules

• FD	reflexivity,	augmentation,	and	transitivity
• MVD	complementation:
If	𝑋 ↠ 𝑌,	then	𝑋 ↠ 𝑎𝑡𝑡𝑟𝑠 𝑅 − 𝑋 − 𝑌

• MVD	augmentation:
If	𝑋 ↠ 𝑌 and	𝑉 ⊆ 𝑊,	then	𝑋𝑊 ↠ 𝑌𝑉

• MVD	transitivity:
If	𝑋 ↠ 𝑌 and	𝑌 ↠ 𝑍,	then	𝑋 ↠ 𝑍 − 𝑌

• Replication	(FD	is	MVD):
If	𝑋 → 𝑌,	then	𝑋 ↠ 𝑌

• Coalescence:
If	𝑋 ↠ 𝑌 and	𝑍 ⊆ 𝑌 and	there	is	some	𝑊 disjoint	from	
𝑌 such	that	𝑊 → 𝑍,	then	𝑋 → 𝑍

43

Try	proving	things	using	these!?

Verify	these	yourself!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



An	elegant	solution:	“chase”

• Given	a	set	of	FD’s	and	MVD’s	𝒟,	does	another	
dependency	𝑑 (FD	or	MVD)	follow	from	𝒟?

• Procedure
– Start	with	the	premise	of	𝑑,	and	treat	them	as	“seed”	
tuples	in	a	relation

– Apply	the	given	dependencies	in	𝒟 repeatedly
• If	we	apply	an	FD,	we	infer	equality	of	two	symbols
• If	we	apply	an	MVD,	we	infer	more	tuples

– If	we	infer	the	conclusion	of	𝑑,	we	have	a	proof
– Otherwise,	if	nothing	more	can	be	inferred,	we	have	a	
counterexample

44

Read	this	slide	after	looking	at	the	examples

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

TO	BE	CONTINUED	IN	LECTURE	6



Proof	by	chase
• In	𝑅 𝐴, 𝐵, 𝐶, 𝐷 ,	does	𝐴 ↠ 𝐵 and	𝐵 ↠ 𝐶
imply	that	𝐴 ↠ 𝐶?

45

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏8 𝑐8 𝑑8
𝑎 𝑏9 𝑐9 𝑑9

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏8 𝑐9 𝑑8
𝑎 𝑏9 𝑐8 𝑑9

Have: Need:

𝑎 𝑏9 𝑐8 𝑑8
𝑎 𝑏8 𝑐9 𝑑9

𝐴 ↠ 𝐵

𝑎 𝑏9 𝑐8 𝑑9
𝑎 𝑏9 𝑐9 𝑑8

𝐵 ↠ 𝐶

𝑎 𝑏8 𝑐9 𝑑8
𝑎 𝑏8 𝑐8 𝑑9

𝐵 ↠ 𝐶

A
A

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Another	proof	by	chase
• In	𝑅 𝐴, 𝐵, 𝐶, 𝐷 ,	does	𝐴 → 𝐵 and	𝐵 → 𝐶 imply	
that	𝐴 → 𝐶?

46

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏8 𝑐8 𝑑8
𝑎 𝑏9 𝑐9 𝑑9

Have: Need:
𝑐8 = 𝑐9

𝐴 → 𝐵 𝑏8 = 𝑏9
𝐵 → 𝐶 𝑐8 = 𝑐9

A

In	general,	with	both	MVD’s	and	FD’s,
chase	can	generate	both	new	tuples	and	new	equalities

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Counterexample	by	chase
• In	𝑅 𝐴, 𝐵, 𝐶, 𝐷 ,	does	𝐴 ↠ 𝐵𝐶 and	𝐶𝐷 → 𝐵
imply	that	𝐴 → 𝐵?

47

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏8 𝑐8 𝑑8
𝑎 𝑏9 𝑐9 𝑑9

Have: Need:
𝑏8 = 𝑏9

𝑎 𝑏9 𝑐9 𝑑8
𝑎 𝑏8 𝑐8 𝑑9

𝐴 ↠ 𝐵𝐶

D

Counterexample!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



4NF

• A	relation	𝑅 is	in	Fourth	Normal	Form	(4NF)	if
– For	every	non-trivial	MVD	𝑋 ↠ 𝑌 in	𝑅,	𝑋 is	a	
superkey

– That	is,	all	FD’s	and	MVD’s	follow	from	“key	→
other	attributes”	(i.e.,	no	MVD’s	and	no	FD’s	
besides	key	functional	dependencies)

• 4NF	is	stronger	than	BCNF
– Because	every	FD	is	also	a	MVD

48Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



4NF	decomposition	algorithm

• Find	a	4NF	violation
– A	non-trivial	MVD	𝑋 ↠ 𝑌 in	𝑅 where	𝑋 is	not a	superkey

• Decompose	𝑅 into	𝑅8 and	𝑅9,	where
– 𝑅8 has	attributes	𝑋 ∪ 𝑌
– 𝑅9 has	attributes	𝑋 ∪ 𝑍 (where	𝑍 contains	𝑅 attributes	not	
in	𝑋 or	𝑌)

• Repeat	until	all	relations	are	in	4NF

• Almost	identical	to	BCNF	decomposition	algorithm
• Any	decomposition	on	a	4NF	violation	is	lossless

49Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



4NF	decomposition	example

50

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

User (uid,	gid,	place)
4NF	violation:	uid↠	gid

Member	(uid,	gid) Visited	(uid,	place)
4NF 4NFuid gid

142 dps

456 abc

456 gov

… …

uid place

142 Springfield

142 Australia

456 Springfield

456 Morocco

… …

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Other	kinds	of	dependencies	and	
normal	forms

• Dependency	preserving	decompositions
• Join	dependencies
• Inclusion	dependencies
• 5NF,	3NF,	2NF
• See	book	if	interested	(not	covered	in	class)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 51



Summary

• Philosophy	behind	BCNF,	4NF:
Data	should	depend	on	the	key,	
the	whole	key,	
and	nothing	but	the	key!
– You	could	have	multiple	keys	though

• Redundancy	is	not	desired	typically
– not	always,	mainly	due	to	performance	reasons

• Functional/multivalued	dependencies	– capture	redundancy
• Decompositions	– eliminate	dependencies
• Normal	forms

– Guarantees	certain	non-redundancy
– BCNF,	and	4NF

• Lossless	join
• How	to	decompose	into	BCNF,	4NF
• Chase

52Duke	CS,	Fall	2018 CompSci	516:	Database	Systems


