
CompSci 516
Database	Systems

Lecture	7-8
Index

(B+-Tree	and	Hash)

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Announcements
• HW1	and	project	proposal	deadlines	next	
week:
– Due	on	09/27	(Thurs),	11:55	pm,	no	late	days
– HW1	submission	on	gradescope (code	on	piazza)
– Proposal	submission	on	sakai (one	per	group)
– Project	ideas	on	sakai

• Do	not	forget	to	start	homeworks early!
– Especially	for	the	next	two	HW

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 2

Reading	Material

• [RG]		
– Storage:	Chapters	8.1,	8.2,	8.4,	9.4-9.7
– Index:	8.3,	8.5	
– Tree-based	index:	Chapter	10.1-10.7
– Hash-based	index:	Chapter	11

Additional	reading
• [GUW]

– Chapters	8.3,	14.1-14.4

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.

Recap

• Storage	:	
– Files	->	Records	->	Fields
– Fixed	and	variable	length

• Index
– Search	key	k	->	Data	entry	k*	->	Record
– Alternative	1/2/3	for	k*
– Primary/secondary,	clustered/unclustered

• Today
– B+	tree	index
– Hash	based	index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Tree-based	Index	
and	B+-Tree

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5

Range	Searches

• ``Find	all	students	with	gpa >	3.0’’
– If	data	is	in	sorted	file,	do	binary	search	to	find	
first	such	student,	then	scan	to	find	others.

– Cost	of	binary	search	can	be	quite	high.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

Index	file	format

• Simple	idea:		Create	an	“index	file”
– <first-key-on-page,	pointer-to-page>,	sorted	on	keys

Can do binary search on (smaller) index file
but may still be expensive: apply this idea repeatedly

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7

Indexed	Sequential	Access	Method	
(ISAM)

• Leaf-pages	contain	data	entry	– also	some	overflow	pages
• DBMS	organizes	layout	of	the	index	– a	static	structure
• If	a	number	of	inserts	to	the	same	leaf,	a	long	overflow	chain	can	be	created

– affects	the	performance

Leaf pages contain data entries.

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

B+	Tree
• Most	Widely	Used	Index

– a	dynamic	structure
• Insert/delete	at	log	F N	cost	=	height	of	the	tree		(cost	=	I/O)

– F	=	fanout,	N	=	no.	of	leaf	pages
– tree	is	maintained	height-balanced

• Minimum	50%	occupancy
– Each	node	contains	d <=		m		<=	2d entries
– Root	contains	1	<=	m	<=	2d	entries
– The	parameter	d is	called	the	order of	the	tree

• Supports	equality	and	range-searches	efficiently

Index Entries

Data Entries
("Sequence set")

(Direct search)
The	index-file

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9

B+	Tree	Indexes

• Leaf pages contain data entries, and are chained (prev & next)
• Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-l eaf
Pages

Pages
(Sorted by search key)

Leaf

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10

Example	B+	Tree

• Search	begins	at	root,	and	key	comparisons	
direct	it	to	a	leaf

• Search	for	5*,	15*,	all	data	entries	>=	24*	...
Based on the search for 15*, we know
it is not in the tree!Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11

Example	B+	Tree

• Find	
– 28*?	
– 29*?	
– All	>	15*	and	<	30*

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries	<		17 Entries	>=		17

Note	how	data	entries
in	leaf	level	are	sorted

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

B+	Trees	in	Practice

• Typical	order:	d	=	100.		Typical	fill-factor:	67%
– average	fanout F	=	133

• Typical	capacities:
– Height	4:	1334 =	312,900,700	records
– Height	3:	1333 =					2,352,637	records

• Can	often	hold	top	levels	in	buffer	pool:
– Level	1	=											1	page		=					8	Kbytes
– Level	2	=						133	pages	=					1	Mbyte
– Level	3	=	17,689	pages	=	133	MBytes

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13

Inserting	a	Data	Entry	into	a	B+	Tree

• Find	correct	leaf	L
• Put	data	entry	onto	L

– If	L	has	enough	space,	done
– Else,	must	split L

• into	L	and	a	new	node	L2
• Redistribute	entries	evenly,	copy	up	middle	key.
• Insert	index	entry	pointing	to	L2	into	parent	of	L.

• This	can	happen	recursively
– To	split	index	node,	redistribute	entries	evenly,	but	push	
up	middle	key

• Contrast	with	leaf	splits
• Splits	“grow”	tree;	root	split	increases	height.		

– Tree	growth:	gets	wider or	one	level	taller	at	top.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

See	this	slide	later,
First,	see	examples	on	the	next
few	slides

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting	8*	into	Example	B+	Tree

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

• Copy-up:	5	appears	
in	leaf	and	the	level	
above

• Observe	how	
minimum	
occupancy	is	
guaranteed

STEP-1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15

• Note	difference	between	
copy-up	and	push-up

• What	is	the	reason	for	this	
difference?

• All	data	entries	must	
appear	as	leaves

– (for	easy	range	search)
• no	such	requirement	for	

indexes	
– (so	avoid	redundancy)

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting	8*	into	Example	B+	Tree

STEP-2

5* 7* 8*

Need	to	split	parent

5

Example	B+	Tree	After	Inserting	8*

• Notice that root was split, leading to increase in height.

• In this example, we can avoid split by re-distributing entries (insert 8 to
the 2nd leaf node from left and copy it up instead of 13)

• however, this is usually not done in practice – since need to access 1-2
extra pages always (for two siblings), and average occupancy may
remain unaffected as the file grows

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

Announcements:	9/25
• Private	project	threads	created	on	piazza

– Please	use	these	threads	(and	not	emails)	for	all	
communications	on	your	project

• Project	proposal/HW1	deadline
– Thursday	9/27,	11:55	pm
– Deadline	is	strict,	submit	early

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18

Deleting	a	Data	Entry	from	a	B+	Tree

• Start	at	root,	find	leaf	L	where	entry	belongs
• Remove	the	entry

– If	L	is	at	least	half-full,	done!	
– If	L	has	only	d-1	entries,

• Try	to	re-distribute,	borrowing	from	sibling	(adjacent	node	with	same	
parent	as	L)

• If	re-distribution	fails,	merge L	and	sibling

• If	merge	occurred,	must	delete	entry	(pointing	to	L	or	
sibling)	from	parent	of	L

• Merge	could	propagate	to	root,	decreasing	height

Each	non-root	node	contains	d <=		m		<=	2d entries

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19

See	this	slide	later,
First,	see	examples	on	the	next
few	slides

Example	Tree:	Delete	19*

• We	had	inserted	8*
• Now	delete	19*
• Easy

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Before	deleting	19*

Example	Tree:	Delete	19*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21

2* 3*

Root
17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

After	deleting	19*

Example	Tree:	Delete	20*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22

2* 3*

Root
17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Before	deleting	20*

Example	Tree:	Delete	20*

• <	2	entries	in	leaf-node
• Redistribute

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23

2* 3*

Root
17

24 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

After	deleting	20*
- step	1

• Notice	how	middle	key	is	copied	up

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Example	Tree:	Delete	20*

After	deleting	20*
- step	2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24

End	of	
Lecture	7

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Before	deleting	24*

Example	Tree: ...	And	Then	Delete	24*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25

• Once	again,	imbalance	at	leaf
• Can	we	borrow	from	sibling(s)?
• No	– d-1	and	d	entries	(d	=	2)
• Need	to	merge

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*

27

27* 29*

After	deleting	24*
- Step	1

Example	Tree: ...	And	Then	Delete	24*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26

• Imbalance	at	parent
• Merge	again
• But	need	to	“pull	down”	root	index	entry

2* 3*

Root

17

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*

30

27* 29*

After	deleting	24*
- Step	2

Example	Tree: ...	And	Then	Delete	24*

• Observe	`toss’ of	old	index	entry	27

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27

because,	three	index	5,	13,	30	
but	five	pointers	to	leaves

Final	Example	Tree

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28

Example	of	Non-leaf	Re-distribution

• An	intermediate	tree	is	shown
• In	contrast	to	previous	example,	can	re-distribute	entry	from	left	child	of	

root	to	right	child		

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29

After	Re-distribution
• Intuitively,	entries	are	re-distributed	by	`pushing	through’	the	

splitting	entry	in	the	parent	node.
– It	suffices	to	re-distribute	index	entry	with	key	20;	we’ve	re-distributed	

17	as	well	for	illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

Duplicates

• First	Option:	
– The	basic	search	algorithm	assumes	that		all	entries	with	the	

same	key	value	resides	on	the	same	leaf	page
– If	they	do	not	fit,	use	overflow	pages	(like	ISAM)

• Second	Option:	
– Several	leaf	pages	can	contain	entries	with	a	given	key	value
– Search	for	the	left	most	entry	with	a	key	value,	and	follow	the	

leaf-sequence	pointers
– Need	modification	in	the	search	algorithm

• if	k*	=	<k,	rid>,	several	entries	have	to	be	searched
– Or	include	rid	in	k		– becomes	unique	index,	no	duplicate
– If	k*	=	<k,	rid-list>,	same	solution,	but	if	the	list	is	long,	again	a	

single	entry	can	span	multiple	pages

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31

A	Note	on	`Order’

• Order	(d)	
– denotes	minimum	occupancy

• replaced	by	physical	space	criterion	in	practice	(`at	least	half-
full’)

– Index	pages	can	typically	hold	many	more	entries	than	leaf	pages
– Variable	sized	records	and	search	keys	mean	different	nodes	will	

contain	different	numbers	of	entries.
– Even	with	fixed	length	fields,	multiple	records	with	the	same	search	key	

value	(duplicates)	can	lead	to	variable-sized	data	entries	(if	we	use	
Alternative	(3))

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 32

Summary
• Tree-structured	indexes	are	ideal	for	range-searches,	also	good	

for	equality	searches
• ISAM	is	a	static	structure

– Only	leaf	pages	modified;	overflow	pages	needed
– Overflow	chains	can	degrade	performance	unless	size	of	data	set	and	

data	distribution	stay	constant
• B+	tree	is	a	dynamic	structure

– Inserts/deletes	leave	tree	height-balanced;	log	F N	cost
– High	fanout (F)	means	depth	rarely	more	than	3	or	4
– Almost	always	better	than	maintaining	a	sorted	file
– Most	widely	used	index	in	database	management	systems	because	of	

its	versatility.		
– One	of	the	most	optimized	components	of	a	DBMS

• Next:	Hash-based	index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 33

Hash-based	Index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 34

Hash-Based	Indexes

• Records	are	grouped	into	buckets
– Bucket	=	primary	page	plus	zero	or	more overflow	pages	

• Hashing	function h:		
– h(r)	=	bucket	in	which	(data	entry	for)	record	r	belongs
– h looks	at	the	search	key	fields	of	r
– No	need	for	“index	entries”	in	this	scheme

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 35

Example:	Hash-based	index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 36

h1
AGE

Smith,	44,	3000
Jones,	40,	6003
Tracy,	44,	5004

Ashby,	25,	3000
Basu,	33,	4003

Bristow,	29,	2007

Cass,	50,	5004
Daniels,	22,	6003

h1(AGE)	=	00

h1(AGE)	=	01

h1(AGE)	=	10

h2

3000
3000
5004
5004

4003
2007
6003
6003

h2(SAL)	=	01

h2(AGE)	=	00

File	of	<SAL,	rid>	pairs	hashed	on	SAL

Employee	File	hashed	on	AGE

Index	organized	file	hashed	on	AGE,	with	Auxiliary	index	on	SAL		

Alternative	1

Alternative	2

Introduction

• Hash-based	indexes	are	best	for	equality	
selections
– Find	all	records	with	name	=	“Joe”
– Cannot	support	range	searches
– But	useful	in	implementing	relational	operators	like	
join	(later)

• Static	and	dynamic	hashing	techniques	exist	
– trade-offs	similar	to	ISAM	vs.	B+	trees

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37

Static	Hashing
• Pages	containing	data	=	a	collection	of	buckets

– each	bucket	has	one	primary	page,	also	possibly	
overflow	pages

– buckets	contain	data	entries	k*

h(key)	mod	N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 38

Static	Hashing
• #	primary	pages	fixed

– allocated	sequentially,	never	de-allocated,	overflow	pages	if	
needed.

• h(k)	mod	N	=	bucket	to	which	data	entry	with	key	k	
belongs
– N	=	#	of	buckets

h(key)	mod	N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39

Static	Hashing
• Hash	function	works	on	search	key	field	of	record	r

– Must	distribute	values	over	range	0	...	N-1
– h(key)	=	(a	*	key	+	b)	usually	works	well

• bucket	=	h(key)	mod	N
– a	and	b	are	constants	– chosen	to	tune	h

• Advantage:
– #buckets	known	– pages	can	be	allocated	sequentially
– search	needs	1	I/O	(if	no	overflow	page)
– insert/delete	needs	2	I/O	(if	no	overflow	page)	(why	2?)

• Disadvantage:
– Long	overflow	chains	can	develop	if	file	grows	and	degrade	performance	(data	

skew)
– Or	waste	of	space	if	file	shrinks

• Solutions:
– keep	some	pages	say	80%	full	initially
– Periodically	rehash if	overflow	pages	(can	be	expensive)
– or	use	Dynamic	Hashing

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 40

Dynamic	Hashing	Techniques

• Extendible	Hashing
• Linear	Hashing

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 41

Extendible	Hashing
• Consider	static	hashing
• Bucket	(primary	page)	becomes	full

• Why	not	re-organize	file	by	doubling	#	of	buckets?
– Reading	and	writing	(double	#pages)	all	pages	is	expensive

• Idea:		Use	directory	of	pointers	to	buckets
– double	#	of	buckets	by	doubling	the	directory,	splitting	just	the	

bucket	that	overflowed
– Directory	much	smaller	than	file,	so	doubling	it	is	much	cheaper
– Only	one	page	of	data	entries	is	split
– No	overflow	page	(new	bucket,	no	new	overflow	page)
– Trick	lies	in	how	hash	function	is	adjusted

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 42

Example
• Directory	is	array	of	size	4

– each	element	points	to	a	bucket
– #bits	to	represent	=	log	4	=	2	=	

global	depth

• To	find	bucket	for	search	key	r
– take	last	global	depth	#	bits	of	

h(r)
– assume	h(r)	=	r
– If	h(r)	=	5	=	binary	101
– it	is	in	bucket	pointed	to	by	01

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 6213

Example
Insert:
• If bucket is full, split it
• allocate new page
• re-distribute

Suppose	inserting	13*
• binary	=	1101
• bucket	01
• Has	space,	insert

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 6214

Example
Insert:
• If bucket is full, split it
• allocate new page
• re-distribute

Suppose	inserting	20*
• binary	=	10100
• bucket	00
• Already	full
• To	split,	consider	last	three	bits	of	10100
• Last	two	bits	the	same	00	– the	data	entry	

will	belong	to	one	of	these	buckets
• Third	bit	to	distinguish	them

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 6215

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000
001
010
011
100
101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(new `split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 46

Global	depth:	Max	#	of		bits	needed	to	tell	which	bucket	an	entry	belongs	to	

Local	depth:	#	of	bits	used	to	determine	if	an	entry	belongs	to	this	bucket
• also	denotes	whether	a	directory	doubling	is	needed	while	splitting
• no	directory	doubling	needed	when	9*	=	1001	is	inserted	(LD<	GD)

Example

When	does	bucket	split	cause	
directory	doubling?

• Before	insert,	local	depth	of	bucket	=	global	depth
• Insert	causes	local	depth	to	become	>	global	
depth

• directory	is	doubled	by	copying	it	over	and	`fixing’	
pointer	to	split	image	page

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 47

Comments	on	Extendible	Hashing
• If	directory	fits	in	memory,	equality	search	answered	with	one	

disk	access	(to	access	the	bucket);	else	two.
– 100MB	file,	100	bytes/rec,	4KB	page	size,	contains	106 records	(as	data	

entries)	and	25,000	directory	elements;	chances	are	high	that	directory	
will	fit	in	memory.

– Directory	grows	in	spurts,	and,	if	the	distribution	of	hash	values	is	skewed,	
directory	can	grow	large

– Multiple	entries	with	same	hash	value	cause	problems

• Delete:		
– If	removal	of	data	entry	makes	bucket	empty,	can	be	merged	with	`split	

image’
– If	each	directory	element	points	to	same	bucket	as	its	split	image,	can	

halve	directory.	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 48

Linear	Hashing

• This	is	another	dynamic	hashing	scheme
– an	alternative	to	Extendible	Hashing

• LH	handles	the	problem	of	long	overflow	chains
– without	using	a	directory
– handles	duplicates	and	collisions
– very	flexible	w.r.t.	timing	of	bucket	splits

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

Linear	Hashing:	Basic	Idea
• Use	a	family	of	hash	functions	h0,	h1,	h2,	...

– hi(key)	=	h(key)	mod(2iN)
– N	=	initial	#	buckets
– h	is	some	hash	function	(range	is	not	0	to	N-1)
– If	N	=	2d0,	for	some	d0,	hi consists	of	applying	h	and	looking	at	the	
last	di bits,	where	di =	d0 +	i

• Note:	hi(key)	=	h(key)	mod(2d0+i)
– hi+1	doubles	the	range	of	hi

• if	hi maps	to	M	buckets,	hi+1 maps	to	2M	buckets
• similar	to	directory	doubling

– Suppose	N	=	32,	d0 =	5
• h0 =	h	mod	32	(last	5	bits)
• h1 =	h	mod	64	 (last	6	bits)
• h2 =	h	mod	128	 (last	7	bits)	etc.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 50

Linear	Hashing:	Rounds

• Directory	avoided	in	LH	by	using	overflow	pages,	
and	choosing	bucket	to	split	round-robin

• During	round	Level,	only	hLevel and	hLevel+1 are	in	
use

• The	buckets	from	start	to	last	are	split	sequentially
– this	doubles	the	no.	of	buckets

• Therefore,	at	any	point	in	a	round,	we	have
– buckets	that	have	been	split
– buckets	that	are	yet	to	be	split
– buckets	created	by	splits	in	this	round

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 51

Overview	of	LH	File		

Levelh

Buckets that existed at the
beginning of this round:

this is the range of

NextBucket to be split
if hLevel (r)
Buckets split in this round:

is in this range, must use

`split image' bucket.
hLevel + 1 (r) to decide if entry is in

`split image' buckets:
created (through splitting
of other buckets) in this round

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 52

Next - 1

• Buckets	0	to	Next-1	have	been	split	
• Next	to	NLevel yet	to	be	split
• Round	ends	when	all	NLevel initial	(for	

round	Level)	buckets	are	split

0

NLevel

is in this range, no need
if hLevel (r)

• In	the	middle	of	a	round	Level	– originally	0	to	NLevel

Overview	of	LH	File		
• In	the	middle	of	a	round	Level	– originally	0	to	NLevel

Levelh

Buckets that existed at the
beginning of this round:

this is the range of

NextBucket to be split
if hLevel (r)
Buckets split in this round:

is in this range, must use

`split image' bucket.
hLevel + 1 (r) to decide if entry is in

`split image' buckets:
created (through splitting
of other buckets) in this round

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 53

Next - 1

• Buckets	0	to	Next-1	have	been	
split	

• Next	to	NLevel yet	to	be	split
• Round	ends	when	all	NR	initial	

(for	round	R)	buckets	are	split

0

NLevel

is in this range, no need
if hLevel (r)

• Search:	To	find	bucket	for	data	entry	r,	find	hLevel(r):
• If	hLevel(r)	in	range	`Next to	NLevel ’ ,	r	belongs	here.
• Else,	r	could	belong	to	bucket	hLevel(r) or	hLevel(r)+NR	

• Apply	hLevel+1(r)	to	find	out

Linear	Hashing:	Insert

• Insert:		Find	bucket	by	applying	hLevel /	hLevel+1:	
– If	bucket	to	insert	into	is	full:

1. Add	overflow	page	and	insert	data	entry
2. Split	Next bucket	and	increment	Next

• Note:	We	are	going	to	assume	that	a	split	is	`triggered’	
whenever	an	insert	causes	the	creation	of	an	overflow	
page,	but	in	general,	we	could	impose	additional	
conditions	for	better	space	utilization	([RG],	p.380)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 54

Example	of	Linear	Hashing

0
hh

1

(This	info
is	for	illustration
only!)

Level=0,	 N0	=	4	=	2d0	 ,				d0=2

00

01

10

11

000

001

010

011

(The	actual	contents
of	the	linear	hashed
file)

Next=0
PRIMARY
PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

• Insert	43*	=	101011
• h0(43)	=	11
• Full
• Insert	in	an	overflow	page
• Need	a	split	at	Next	(=0)
• Entries	in	00	is	distributed	to	

000	and	100

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 26

Example	of	Linear	Hashing

0
hh

1

(This	info
is	for	illustration
only!)

00

01

10

11

000

001

010

011

(The	actual	contents
of	the	linear	hashed
file)

Next=0
PRIMARY
PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

• Next	is	incremented after	split
• Note	the	difference	between	overflow	page	of	11	

and	split	image	of	00	(000	and	100)

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 27

Level=0,	 N0	=	4	=	2d0	 ,				d0=2 Level=0,	 N0	=	4	=	2d0	 ,				d0=2

Example	of	Linear	Hashing

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

• Search	for	18*	=	10010
• between	Next	(=1)	and	4	
• this	bucket	has	not	been	split

• 18	should	be	here

• Search	for	32*	=	100000						or	44*	=	101100
• Between	0	and	Next-1

• Need	h1

• Not	all	insertion	triggers	split
• Insert	37*	=	100101
• Has	space

• Splitting	at	Next?
• No	overflow	bucket	needed
• Just	copy	at	the	image/original

• Next	=	Nlevel-1	and	a	split?
• Start	a	new	round
• Increment	Level
• Next	reset	to	0

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 28

Level=0,	 N0	=	4	=	2d0	 ,				d0=2

Example	of	Linear	Hashing

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

• Not	all	insertion	triggers	split
• Insert	37*	=	100101

• Has	space

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 28

Level=0,	 N0	=	4	=	2d0	 ,				d0=2

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

Level=0,	 N0	=	4	=	2d0	 ,				d0=2

37*

Example	of	Linear	Hashing

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

• Splitting	at	Next?
• No	overflow	bucket	needed
• Just	copy	at	the	image/original

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 28

Level=0,	 N0	=	4	=	2d0	 ,				d0=2

0
hh

1

00

01

10

11

000

001

010

011

Next=2

PRIMARY
PAGES

44* 36*

32*

25*9*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

Level=0,	 N0	=	4	=	2d0	 ,				d0=2

37*

insert	29*	=	11101

5* 37*01101 29*

Example:		End	of	a	Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 60

Level=0,	 N0=	4	=	2d0	 ,				d0=2

Level=1,						N1=	8	=	2d1	 ,				d1=3

(after	inserting	22*,	66*,	34*	
- check	yourself)

insert	50*	=	110010

h2

0000

0001

0010

0011

0100

0101

0110

0111

LH	vs.		EH

• They	are	very	similar
– hi to	hi+1 is	like	doubling	the	directory
– LH:	avoid	the	explicit	directory,	clever	choice	of	split
– EH:	always	split	– higher	bucket	occupancy

• Uniform	distribution:	LH	has	lower	average	cost
– No	directory	level

• Skewed	distribution
– Many	empty/nearly	empty	buckets	in	LH
– EH	may	be	better
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 61

Summary

• Hash-based	indexes:	best	for	equality	searches,	cannot	
support	range	searches.

• Static	Hashing	can	lead	to	long	overflow	chains.
• Extendible	Hashing	avoids	overflow	pages	by	splitting	a	
full	bucket	when	a	new	data	entry	is	to	be	added	to	it
– Duplicates	may	still	require	overflow	pages
– Directory	to	keep	track	of	buckets,	doubles	periodically
– Can	get	large	with	skewed	data;	additional	I/O	if	this	does	not	
fit	in	main	memory

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 62

Summary

• Linear	Hashing	avoids	directory	by	splitting	buckets	
round-robin,	and	using	overflow	pages
– Overflow	pages	not	likely	to	be	long
– Duplicates	handled	easily

• For	hash-based	indexes,	a	skewed data	distribution	is	one	
in	which	the	hash	values	of	data	entries	are	not	uniformly	
distributed
– bad

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 63

