
COMPSCI 638: Graph Algorithms October 16, 2019

Lecture 15
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we give an algorithm for the online Steiner tree problem. To bound its performance
guarantee, we will use a technique known as dual fitting.

2 Online Steiner Tree

Recall that in the Steiner tree problem, we are given a graph G = (V, E) where each edge e has
weight c(e) ≥ 0, as well as a set of terminals T ⊆ V. Our goal was to find a minimum-weight subset
of edges F such that the graph (V, F) contains all of the terminals T in one connected component.

In the online Steiner tree problem, we are given the same edge-weighted graph G = (V, E).
However, now set of k terminals T is revealed one at a time. At each time step i, the algorithm is
shown a terminal ti and must add a subset of edges to connect ti with the terminals tj for j < i. As
in the offline setting, the goal is to minimize the total cost of edges in the solution. Furthermore,
the algorithm is not permitted to remove any edges from the solution once they are added.

The competitive ratio of an algorithm is essentially the “approximation ratio”: it is the worst-case
ratio of the cost of the solution found by the algorithm to the cost of the optimal (offline) solution.
If the competitive ratio of an algorithm is at most c, then we say that algorithm is c-competitive.

2.1 The Greedy Algorithm

A natural algorithm for the online Steiner tree problem is the following: when terminal ti arrives,
the algorithm simply adds the edges of the shortest path from ti to {t1, t2, . . . , ti−1}.

Theorem 1. The greedy algorithm is O(log k)-competitive for the online Steiner tree problem.

Remark: This result is due to Imase and Waxman [IW91], but our proof is simpler and uses
a technique known as dual fitting. Furthermore, Imase and Waxman [IW91] showed that any
algorithm for the online Steiner tree must be Ω(log k)-competitive, and in fact, the constant hidden
in the O(log k) competitive ratio is quite small, meaning that the lower bound is very tight.

Dual fitting: Before giving the proof, we briefly sketch the overall strategy. Our algorithm does not
consider the dual at all (unlike primal-dual algorithms), but in the analysis, we will create a set of
feasible dual solutions. Recall from Lecture 13 that the dual LP is the following:

max ∑
S∈S

yS

∑
S:e∈δ(S)

yS ≤ c(e) ∀e ∈ E

yS ≥ 0 ∀S ∈ S ,

15-1

where S denotes the subsets of V that separate at least one pair of terminals. We will bound ALG
against the total cost of the dual solutions, and since the cost of each dual solution is at most OPT,
this will yield our final competitive ratio.

Placing a dual ball: To construct a dual solution, we will use the notion of placing a “ball” around
some terminal t. Algebraically, this procedure proceeds as follows: let Br(u) denote the ball with
radius r around vertex u. Starting with the set S = {t} = B0(t), we increase the variable yS until
B0(t) (ByS(t); i.e., the ball contains vertices other than t. At this point, we freeze yS and begin
increasing yS′ where S′ = ByS(t). This process continues our ball has the desired radius.

To summarize, “placing a ball” centered at t with radius r corresponds to increasing multiple
dual variables, each corresponding to an increasingly larger cut containing t. The radius of the ball
specifies the total amount of increase across the affected dual variables.

Proof. Consider the following procedure that, as the greedy algorithm proceeds, constructs a set
of feasible dual solutions. When the algorithm connects ti to tj for some j < i, let Ci denote the
incurred cost, and suppose Ci ∈ (2`, 2`+1]. Then in the `-th dual solution, we place a ball of radius
2`−1 centered at ti. We continue this process until the greedy algorithm terminates.

Now we’ll show that the `-th dual solution is feasible by showing that its balls are pairwise
disjoint. Note that the radius of every ball is 2`−1. For contradiction, assume two balls centered at
ti 6= tj overlap, where i > j. Then the distance from ti to tj is at most 2 · 2`−1 = 2` (because the balls
overlap). However, since ti arrived after tj, one option that the greedy algorithm considered was
connecting ti to tj incurring cost at most 2` < Ci, violating the fact that Ci ∈ (2`, 2`+1].

Let D(`) denote the cost of the `-th dual solution, and let T(`) denote the time steps i such that
Ci ∈ (2`, 2`+1]. At any time i ∈ T(`), the algorithm incurs cost Ci ≤ 2`+1 = 4 · 2`−1 and the dual
cost D(`) increases by exactly 2`−1. Since the initial costs are all zero, this implies

∑
i∈T(`)

Ci ≤ 4 · D(`). (1)

Finally, we shall bound ALG = ∑k
i=1 Ci against OPT. First, notice that for every time step i, we

have Ci ≤ OPT because the optimal Steiner tree must contain a path from ti to every tj for j < i.
Now partition the Ci according to the value of OPT/k:

ALG = ∑
i:Ci≤OPT/k

Ci + ∑
i:Ci∈(1/k,1]·OPT

Ci ≤ OPT + ∑
i:Ci∈(1/k,1]·OPT

Ci. (2)

We will bound the final summation by applying (1). Let L denote the set of all dual solution indices
that get updated at any time i such that Ci ∈ (1/k, 1] ·OPT. Then from (1), we see that

∑
i:Ci∈(1/k,1]·OPT

Ci ≤ 4 ∑
`∈L

D(`) ≤ 4|L| ·OPT,

where the second inequality holds because every dual cost is at most OPT. Every dual solution
corresponds to a particular range on the value of Ci, and the length of these ranges doubles with
each dual solution. Thus, the number of ranges in (1/k, 1] ·OPT, i.e., the value of |L|, is at most
log2 k. Combining this with (2) proves that the competitive ratio of our algorithm is O(log k).

15-2

3 Summary

In this lecture, we proved that the greedy algorithm for the online Steiner tree problem is O(log k)-
competitive. The proof constructs a set of feasible dual solutions, bounds the cost of the algorithm
against the sum of their costs, and finally bounds the number of dual solutions.

References

[IW91] Makoto Imase and Bernard M Waxman. Dynamic steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991.

15-3

	Overview
	Online Steiner Tree
	The Greedy Algorithm

	Summary

