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1 Overview

In the last lecture, we introduced the notion of effective resistances in a network. In this lecture,
we give an algorithm that samples according to effective resistances for spectral sparsification, a
generalization of graph sparsification that we saw in Lecture 9.

2 Spectral Sparsification via Effective Resistances

Let G = (V, E) be an undirected graph on n vertices and m edges. Recall (from Lecture 9) that
the goal of graph sparsification is to find a (edge-weighted) subgraph H on V such that the value
of every cut in G is approximately preserved in H. In terms of the Laplacian matrix LG, this is
equivalent to preserving x>LGx for any x ∈ {0, 1}n (see Lecture 17).

In this lecture, we generalize this notion to spectral sparsification: given G = (V, E) and some
ε ∈ (0, 1), we want to construct a (sparse) subgraph H such that the following is true:

(1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx ∀x ∈ Rn. (1)

If H satisfies the condition above with high probability, then H is a spectral sparsifier of G.

The algorithm: The overall strategy is similar to the scheme of Benczúr and Karger [BK15] (see
Lecture 10), but instead of using strengths, Spielman and Srivastava [SS11] use effective resistances.
Recall (from Lecture 18) that the effective resistance of an edge e = (a, b) ∈ E, denoted R(e), can
be thought of as the effective resistance between a and b given by the entire network. Intuitively,
edges with higher effective resistance belong to sparser cuts, so pe should be proportional to R(e).

We now formally state the sampling procedure for constructing a spectral sparsifier. The
sampling procedure runs for q = O(n log n/ε2) iterations. In each iteration, we sample every edge
e with probability pe, where pe = R(e)/ ∑e R(e) is proportional to R(e). If e is sampled, we increase
the weight of e in H by 1/qpe. Thus, if e is sampled xe times, its final weight in H is xe/qpe.

Theorem 1 (Spielman and Srivastava [SS11]). The sampling procedure described above produces a
spectral sparsifier H containing O(n log n/ε2) edges.

The outline of our proof is the following: we first reduce the problem to bounding the norm of
a matrix. We then show how we construct this matrix. Finally, we apply a matrix concentration
theorem due to Rudelson and Vershynin [RV07] to bound the norm of the matrix.

Recall (from Lecture 18) that LG = B>B where B is the signed edge-vertex adjacency matrix of G.
To write LH in a similar form, let S ∈ Rm×m be a diagonal matrix defined as follows: Se,e = xe/qpe,
where xe is the number of times e was sampled. The weight of e in H is Se,e, so LH = B>SB.
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Now notice that proving (1) is equivalent to proving

ε ≥ max
x∈Rn

∣∣x>LHx− x>LGx
∣∣

x>LGx
= max

x∈Rn

∣∣x>B>SBx− x>B>Bx
∣∣

x>B>Bx
.

We substitute y = Bx ∈ Rm in the above expression and let im(B) denote the image (i.e., column
space) of B. By scaling, we can assume y>y = 1, so our goal is to show

ε ≥ max
y∈im(B)

∣∣y>Sy− yTy
∣∣

y>y
= max

y∈im(B)

∣∣∣y>(S− I)y
∣∣∣, (2)

where I denotes the m×m identity matrix. So we are essentially bounding the matrix norm of S− I,
but the constraint y ∈ im(B) makes our task more challenging because we are only considering
vectors in an n-dimensional subspace of Rm.

The projection matrix: To address this issue, we will define a projection matrix Π : Rm → Rn that
satisfies the following: if y ∈ im(B) then Πy = y, and otherwise, Πy ∈ im(B). The existence of
such a matrix allows us to replace y with Πy in (2) and drop the y ∈ im(B) constraint. Thus, our
goal is to find such a Π and prove the following:∥∥∥Π>SΠ−Π>Π

∥∥∥
2
≤ ε. (3)

To construct Π in two dimensions, we can project a point v onto a line ` by mapping it to its
orthogonal projection w on `; this point minimizes ‖v− w‖2. In general, we want to map v to a
point w = Πv such that the following condition is satisfied:

w = Πv = arg min
x∈im(B)

||v− x||2.

It can be shown that if w ∈ im(B) is defined as above, then B>(v− w) = 0, so B>v = B>w. Since
w = Bx for some x, we have B>v = B>Bx, and solving for Bx, we get w = Bx = B(B>B)−1B>v.
Thus, our projection matrix is Π = B(B>B)−1B>; notice Π satisfies Π> = Π and Π2 = Π.

Matrix concentration: Now that we have defined Π, we can now return our attention to proving
(3). By the properties of Π stated above, we can see that∥∥∥Π>SΠ−Π>Π

∥∥∥
2
= ‖ΠSΠ−ΠΠ‖2.

To minimize this quantity, we use the following matrix concentration theorem.

Theorem 2 (Rudelson and Vershynin [RV07]). Let y1, . . . , ym ∈ Rm be vectors that satisfy ‖yi‖2 ≤ M
for some M ∈ R and every i. Suppose we draw q independent samples, where yi is drawn with probability
pi, to obtain ỹ1, ỹ2, . . . , ỹq. If Ep[yy>] = ∑m

i=1 piyiy>i satisfies
∥∥Ep[yy>]

∥∥
2 ≤ 1, then

E

∥∥∥∥∥1
q

q

∑
i=1

ỹiỹ>i −Ep[yy>]

∥∥∥∥∥
2

= O

(
M

√
log q

q

)
.
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Define ye = Πe/
√

pe so that

Ep[yy>] = ∑
e∈E

pe
Πe√

pe

Π>e√
pe

= Π2 = Π, (4)

which implies ∥∥∥Ep[yy>]
∥∥∥

2
= ‖Π‖2 = 1.

Now suppose we sample the ye vectors q times according to pe to obtain ỹ1, . . . , ỹq. Then we have
the following:

1
q

q

∑
i=1

ỹiỹ>i =
1
q ∑

e∈E
xe

Πe√
pe

Π>e√
pe

= ∑
e∈E

Se,eΠeΠ>e = ΠSΠ. (5)

Thus, we can now bound E‖ΠSΠ−ΠΠ‖2 by applying Theorem 2 and using (5) and (4):

E‖ΠSΠ−ΠΠ‖2 = O

(
M

√
log q

q

)
(6)

for some M satisfying ‖yi‖2 ≤ M for every i, that we shall now determine. By properties of Π, it
can be shown that

‖ye‖2 =
1
√

pe
‖Πe‖2 =

1
√

pe

√
Πe,e =

1
√

pe

√
R(e),

where Πe,e denotes the (e, e)-th entry of Π. In the algorithm, we set pe = R(e)/ ∑e R(e), so

‖ye‖2 =
√

∑
e∈E

R(e).

It is known that if we sample a spanning tree of G uniformly at random, then the probability that
e is in the tree is exactly R(e). Thus, we can set M =

√
n− 1. If we also set q = cn log n/ε2 for a

sufficiently large constant c, then (6) implies

E‖ΠSΠ−ΠΠ‖2 = O

(
√

n− 1

√
ε2 log q
n log n

)
≤ ε

2
.

By Markov’s inequality, with probability at least one half, E‖ΠSΠ−ΠΠ‖2 ≤ ε, as desired. Note
that this probability can be boosted by the standard trick of repeating the procedure multiple times
and taking the median.

3 Summary

In this lecture, we saw how sampling by effective resistances yields a spectral sparsifier, which is
a generalized version of cut sparsifiers that we saw in previous lectures. The proof reduces the
sparsification condition to a claim about the size of the norm of a matrix and applies a matrix
concentration bound to prove the claim.
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