Lecture 19

Lecturer: Debmalya Panigrahi
Scribe: Kevin Sun

1 Overview

In the last lecture, we introduced the notion of effective resistances in a network. In this lecture, we give an algorithm that samples according to effective resistances for spectral sparsification, a generalization of graph sparsification that we saw in Lecture 9.

2 Spectral Sparsification via Effective Resistances

Let $G=(V, E)$ be an undirected graph on n vertices and m edges. Recall (from Lecture 9) that the goal of graph sparsification is to find a (edge-weighted) subgraph H on V such that the value of every cut in G is approximately preserved in H. In terms of the Laplacian matrix L_{G}, this is equivalent to preserving $x^{\top} L_{G} x$ for any $x \in\{0,1\}^{n}$ (see Lecture 17).

In this lecture, we generalize this notion to spectral sparsification: given $G=(V, E)$ and some $\epsilon \in(0,1)$, we want to construct a (sparse) subgraph H such that the following is true:

$$
\begin{equation*}
(1-\epsilon) x^{\top} L_{G} x \leq x^{\top} L_{H} x \leq(1+\epsilon) x^{\top} L_{G} x \quad \forall x \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

If H satisfies the condition above with high probability, then H is a spectral sparsifier of G.
The algorithm: The overall strategy is similar to the scheme of Benczúr and Karger [BK15] (see Lecture 10), but instead of using strengths, Spielman and Srivastava [SS11] use effective resistances. Recall (from Lecture 18) that the effective resistance of an edge $e=(a, b) \in E$, denoted $R(e)$, can be thought of as the effective resistance between a and b given by the entire network. Intuitively, edges with higher effective resistance belong to sparser cuts, so p_{e} should be proportional to $R(e)$.

We now formally state the sampling procedure for constructing a spectral sparsifier. The sampling procedure runs for $q=O\left(n \log n / \epsilon^{2}\right)$ iterations. In each iteration, we sample every edge e with probability p_{e}, where $p_{e}=R(e) / \sum_{e} R(e)$ is proportional to $R(e)$. If e is sampled, we increase the weight of e in H by $1 / q p_{e}$. Thus, if e is sampled x_{e} times, its final weight in H is $x_{e} / q p_{e}$.

Theorem 1 (Spielman and Srivastava [SS11]). The sampling procedure described above produces a spectral sparsifier H containing $O\left(n \log n / \epsilon^{2}\right)$ edges.

The outline of our proof is the following: we first reduce the problem to bounding the norm of a matrix. We then show how we construct this matrix. Finally, we apply a matrix concentration theorem due to Rudelson and Vershynin [RV07] to bound the norm of the matrix.

Recall (from Lecture 18) that $L_{G}=B^{\top} B$ where B is the signed edge-vertex adjacency matrix of G. To write L_{H} in a similar form, let $S \in \mathbb{R}^{m \times m}$ be a diagonal matrix defined as follows: $S_{e, e}=x_{e} / q p_{e}$, where x_{e} is the number of times e was sampled. The weight of e in H is $S_{e, e}$, so $L_{H}=B^{\top} S B$.

Now notice that proving (1) is equivalent to proving

$$
\epsilon \geq \max _{x \in \mathbb{R}^{n}} \frac{\left|x^{\top} L_{H} x-x^{\top} L_{G} x\right|}{x^{\top} L_{G} x}=\max _{x \in \mathbb{R}^{n}} \frac{\left|x^{\top} B^{\top} S B x-x^{\top} B^{\top} B x\right|}{x^{\top} B^{\top} B x} .
$$

We substitute $y=B x \in \mathbb{R}^{m}$ in the above expression and let $\operatorname{im}(B)$ denote the image (i.e., column space) of B. By scaling, we can assume $y^{\top} y=1$, so our goal is to show

$$
\begin{equation*}
\epsilon \geq \max _{y \in \operatorname{im}(B)} \frac{\left|y^{\top} S y-y^{\top} y\right|}{y^{\top} y}=\max _{y \in \operatorname{im}(B)}\left|y^{\top}(S-I) y\right| \tag{2}
\end{equation*}
$$

where I denotes the $m \times m$ identity matrix. So we are essentially bounding the matrix norm of $S-I$, but the constraint $y \in \operatorname{im}(B)$ makes our task more challenging because we are only considering vectors in an n-dimensional subspace of \mathbb{R}^{m}.
The projection matrix: To address this issue, we will define a projection matrix $\Pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ that satisfies the following: if $y \in \operatorname{im}(B)$ then $\Pi y=y$, and otherwise, $\Pi y \in \operatorname{im}(B)$. The existence of such a matrix allows us to replace y with Πy in (2) and drop the $y \in \operatorname{im}(B)$ constraint. Thus, our goal is to find such a Π and prove the following:

$$
\begin{equation*}
\left\|\Pi^{\top} S \Pi-\Pi^{\top} \Pi\right\|_{2} \leq \epsilon . \tag{3}
\end{equation*}
$$

To construct Π in two dimensions, we can project a point v onto a line ℓ by mapping it to its orthogonal projection w on ℓ; this point minimizes $\|v-w\|_{2}$. In general, we want to map v to a point $w=\Pi v$ such that the following condition is satisfied:

$$
w=\Pi v=\underset{x \in \operatorname{im}(B)}{\arg \min }\|v-x\|_{2} .
$$

It can be shown that if $w \in \operatorname{im}(B)$ is defined as above, then $B^{\top}(v-w)=0$, so $B^{\top} v=B^{\top} w$. Since $w=B x$ for some x, we have $B^{\top} v=B^{\top} B x$, and solving for $B x$, we get $w=B x=B\left(B^{\top} B\right)^{-1} B^{\top} v$. Thus, our projection matrix is $\Pi=B\left(B^{\top} B\right)^{-1} B^{\top}$; notice Π satisfies $\Pi^{\top}=\Pi$ and $\Pi^{2}=\Pi$.
Matrix concentration: Now that we have defined Π, we can now return our attention to proving (3). By the properties of Π stated above, we can see that

$$
\left\|\Pi^{\top} S \Pi-\Pi^{\top} \Pi\right\|_{2}=\|\Pi S \Pi-\Pi \Pi\|_{2} .
$$

To minimize this quantity, we use the following matrix concentration theorem.
Theorem 2 (Rudelson and Vershynin [RV07]). Let $y_{1}, \ldots, y_{m} \in \mathbb{R}^{m}$ be vectors that satisfy $\left\|y_{i}\right\|_{2} \leq M$ for some $M \in \mathbb{R}$ and every i. Suppose we draw q independent samples, where y_{i} is drawn with probability p_{i}, to obtain $\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{q}$. If $\mathbb{E}_{p}\left[y y^{\top}\right]=\sum_{i=1}^{m} p_{i} y_{i} y_{i}^{\top}$ satisfies $\left\|\mathbb{E}_{p}\left[y y^{\top}\right]\right\|_{2} \leq 1$, then

$$
\mathbb{E}\left\|\frac{1}{q} \sum_{i=1}^{q} \tilde{y}_{i} \tilde{y}_{i}^{\top}-\mathbb{E}_{p}\left[y y^{\top}\right]\right\|_{2}=O\left(M \sqrt{\frac{\log q}{q}}\right) .
$$

Define $y_{e}=\Pi_{e} / \sqrt{p_{e}}$ so that

$$
\begin{equation*}
\mathbb{E}_{p}\left[y y^{\top}\right]=\sum_{e \in E} p_{e} \frac{\Pi_{e}}{\sqrt{p_{e}}} \frac{\Pi_{e}^{\top}}{\sqrt{p_{e}}}=\Pi^{2}=\Pi \tag{4}
\end{equation*}
$$

which implies

$$
\left\|\mathbb{E}_{p}\left[y y^{\top}\right]\right\|_{2}=\|\Pi\|_{2}=1 .
$$

Now suppose we sample the y_{e} vectors q times according to p_{e} to obtain $\tilde{y}_{1}, \ldots, \tilde{y}_{q}$. Then we have the following:

$$
\begin{equation*}
\frac{1}{q} \sum_{i=1}^{q} \tilde{y}_{i} \tilde{y}_{i}^{\top}=\frac{1}{q} \sum_{e \in E} x_{e} \frac{\Pi_{e}}{\sqrt{p_{e}}} \frac{\Pi_{e}^{\top}}{\sqrt{p_{e}}}=\sum_{e \in E} S_{e, e} \Pi_{e} \Pi_{e}^{\top}=\Pi S \Pi . \tag{5}
\end{equation*}
$$

Thus, we can now bound $\mathbb{E}\|\Pi S \Pi-\Pi \Pi\|_{2}$ by applying Theorem 2 and using (5) and (4):

$$
\begin{equation*}
\mathbb{E}\|\Pi S \Pi-\Pi \Pi\|_{2}=O\left(M \sqrt{\frac{\log q}{q}}\right) \tag{6}
\end{equation*}
$$

for some M satisfying $\left\|y_{i}\right\|_{2} \leq M$ for every i, that we shall now determine. By properties of Π, it can be shown that

$$
\left\|y_{e}\right\|_{2}=\frac{1}{\sqrt{p_{e}}}\left\|\Pi_{e}\right\|_{2}=\frac{1}{\sqrt{p_{e}}} \sqrt{\Pi_{e, e}}=\frac{1}{\sqrt{p_{e}}} \sqrt{R(e)},
$$

where $\Pi_{e, e}$ denotes the (e, e)-th entry of Π. In the algorithm, we set $p_{e}=R(e) / \sum_{e} R(e)$, so

$$
\left\|y_{e}\right\|_{2}=\sqrt{\sum_{e \in E} R(e)}
$$

It is known that if we sample a spanning tree of G uniformly at random, then the probability that e is in the tree is exactly $R(e)$. Thus, we can set $M=\sqrt{n-1}$. If we also set $q=c n \log n / \epsilon^{2}$ for a sufficiently large constant c, then (6) implies

$$
\mathbb{E}\|\Pi S \Pi-\Pi \Pi\|_{2}=O\left(\sqrt{n-1} \sqrt{\frac{\epsilon^{2} \log q}{n \log n}}\right) \leq \frac{\epsilon}{2}
$$

By Markov's inequality, with probability at least one half, $\mathbb{E}\|\Pi S \Pi-\Pi \Pi\|_{2} \leq \epsilon$, as desired. Note that this probability can be boosted by the standard trick of repeating the procedure multiple times and taking the median.

3 Summary

In this lecture, we saw how sampling by effective resistances yields a spectral sparsifier, which is a generalized version of cut sparsifiers that we saw in previous lectures. The proof reduces the sparsification condition to a claim about the size of the norm of a matrix and applies a matrix concentration bound to prove the claim.

References

[BK15] András A Benczúr and David R Karger. Randomized approximation schemes for cuts and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290-319, 2015.
[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM (JACM), 54(4):21, 2007.
[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913-1926, 2011.

