
COMPSCI 638: Graph Algorithms November 1, 2019

Lecture 20
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we give an introduction to the multiplicative weight update method. This is a
general algorithmic technique that has applications in various fields and problems.

2 Weighted Majority Algorithms

Consider the following problem: at each time step t = 1, . . . , T, we must predict a binary outcome,
and we have access to n experts, each of whom offers an opinion. Once we’ve made a prediction, we
incur some loss `t: if our decision was correct, then `t = 0, and otherwise, `t = 1. Our performance
is measured against the number of errors the best expert (in hindsight) made over all T steps. (Note
that it is possible that we incur fewer losses than the best expert.)

We first establish some notation. Let Lt = ∑t
t′=1 `

t′ denote the total loss that we have incurred
through time t, L = LT denote the total loss, i∗ denote the expert that incurred the least total
amount of loss, and L∗ denote the total loss of i∗. Thus, our goal is to bound L against L∗.

2.1 Deterministic Weighted Majority

We begin by presenting the basic, deterministic version of the weighted majority algorithm. The
idea is the following: initially, we simply poll the experts and predict the majority outcome. After
the outcome is revealed, we decrease the weight of experts that were incorrect, so that in subsequent
steps, their opinion is slightly discounted.

Algorithm 1 Weighted Majority Algorithm

1: Initialize w0
i = 1 for i ∈ {1, . . . , n} and fix some ε ∈ (0, 1/2).

2: for t = 1, . . . , T do
3: Output the weighted majority opinion, where expert i is given weight wt−1

i .
4: for i = 1, . . . , n do
5: if `t

i = 1 (i.e., expert i was incorrect then
6: wt

i = (1− ε)wt−1
i

7: else
8: wt

i = wt−1
i

Theorem 1. The loss L incurred by Algorithm 1 satisfies the following:

L ≤ 2(1 + ε)L∗ +
2 ln n

ε
.

20-1



Proof. Let Wt = ∑i wt
i denote sum of the weights on the experts at time t, so initially, we have

W0 = n. Whenever `t = 1, then at least half of the total weight gets reduced by a (1− ε) factor, so

Wt ≤
(

1− ε

2

)
Wt−1.

Thus, since our total loss is L, the total weight at the end is

WT ≤
(

1− ε

2

)L
n. (1)

Now consider the weight of the best expert i∗, who incurs a total loss of L∗:

wT
i∗ = (1− ε)L∗ . (2)

Combining (1) and (2) with WT ≥ wT
i∗ , and taking a natural logarithm, yields

L ln
(

1− ε

2

)
+ ln n ≥ L∗ ln(1− ε).

We now apply the inequality −x− x2 ≤ ln(1− x) ≤ −x when x ∈ (0, 1/2) to get

L
(
−ε

2

)
+ ln n ≥ L∗(−ε− ε2),

and rearranging this yields the desired inequality.

Remark: We note that the factor of 2 obtained in Theorem 1 is unavoidable: consider the setting
where there are two experts that disagree at every step, and at every step, our algorithm incurs a
loss for a total loss of T. The experts, together, incur a total loss of T, so the best expert incurs at
most T/2 loss. But this construction assumes the algorithm is deterministic, i.e., the input can be
chosen adversarially. So now, we show how to overcome this 2 using a randomized algorithm.

2.2 Randomized Weighted Majority

The algorithm is a simple modification of Algorithm 1: at each step, we flip a coin with bias
proportional to the total weight of each outcome.

Theorem 2. The randomized weighted majority algorithm has expected loss

L ≤ (1 + ε)L∗ +
ln n

ε
.

Proof. The proof is similar to the proof of Theorem 1, and we follow the same notation. But now,
we let `t denote the expected loss at step t, so `t is the proportion of weight assigned to the incorrect
outcome. Thus,

Wt ≤ (1− ε`t)Wt−1.

Thus, the total weight after T time steps is

WT ≤
(

T

∏
i=1

(1− ε`t)

)
n

20-2



Applying WT ≥ wT
i∗ = (1− ε)L∗ to the previous inequalities yields(

T

∏
i=1

(1− ε`t)

)
n ≥ (1− ε)L∗

Taking the natural logarithm of both sides yields
T

∑
t=1

ln
(
1− ε`t)+ ln n ≥ L∗ ln(1− ε), (3)

Again, applying the bound ln(1− x) ≤ −x gives us
T

∑
t=1

ln
(
1− ε`t) ≤ −ε

T

∑
t=1

`t = −εL.

Substituting this into (3) and rearranging yields the desired inequality.

2.3 Generalized Loss

We now generalize our problem setting: our loss at step t can now be any real number `t ∈ [0, 1],
and at each step t, we let `t

i ∈ [0, 1] denote the loss of expert i. Our algorithm is still the randomized
weighted majority algorithm from Sec. 2.2, but we generalize our update rule to the following,
which occurs at every step t for every expert i.

wt
i = (1− ε`t

i)w
t−1
i .

(Updating the weights by a factor of (1− ε)`
t
i is essentially equivalent.) At each step, we make a

decision by following an expert chosen with probability proportional to their weight.

Theorem 3. For generalized loss `t ∈ [0, 1], the above algorithm incurs loss

L ≤ (1 + ε)L∗ +
ln n

ε
.

Proof. We follow the notation as the proof of Theorem 2 to obtain

WT ≤
(

T

∏
t=1

(1− ε`t)

)
n.

Furthermore, the final weight of the best expert i∗ is the following:

wT
i∗ =

T

∏
t=1

(1− ε)`
t
i∗ = (1− ε)L∗ .

The rest of the proof is identical to the proof of Theorem 2.

Remark: We can further generalize the problem by assuming the loss `t ∈ [0, p] for some p ≥ 1.
Then scaling the entire problem down by p allows us to apply Theorem 3 to the loss quantities L/p
and L∗/p. Thus, scaling back to the original problem gives us a loss guarantee of

L ≤ (1 + ε)L∗ +
p ln n

ε
.

This quantity p is the known as width of the problem, and in the next lecture, we will see its
importance in the design of algorithms.

20-3



3 Summary

In this lecture, we began our study of the multiplicative weight update method by looking at
the weighted majority algorithm and its randomized variant. We also studied a generalized loss
function and introduced the notion of width, which will be used in future lectures.

20-4


	Overview
	Weighted Majority Algorithms
	Deterministic Weighted Majority
	Randomized Weighted Majority
	Generalized Loss

	Summary

