COMPSCI 638: Graph Algorithms November 20, 2019
Lectures 25-26

Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In the last lecture, we showed that integrality gap of the linear programming relaxation of the
sparsest cut problem is)(log 1), so no LP-based solution can have approximation ratio better than
O(logn). In this lecture, we give an overview of an SDP-based approach that allows us to obtain
an O(+/log n)-approximation algorithm.

2 SDP for Sparsest Cut

Recall that in the sparsest cut problem, we are given an undirected graph G = (V, E) on n vertices
where each edge (i, j) has capacity c(i,j) > 0. Our goal is to find the sparsest cut, and we’ve seen
that up to a constant factor, this is equivalent to finding S C V that minimizes §(S)/[S| - |S| where
5(S) denotes the capacity of edges crossing Sand S = V' \ S.

In Lecture 7, we gave an LP-based O(log n)-approximation algorithm, and in Lecture 24, we
showed that the integrality gap of this LP is ()(log 1). Thus, in order to achieve a better performance
guarantee, we introduce the following approach given by Arora, Rao, and Vazirani [ARV09].

2.1 Negative Type Metrics

Our LP formulation was obtained through a series of relaxations: finding a cut is equivalent to
finding an elementary cut metric. From here, we extended our search to cut metrics, which are
equivalent to /1-metrics. Finally, we extended our search to all metrics; this problem is easy to
solve, and every metric can be approximated by an ¢;-metric with O(logn) distortion.

In this section, we tighten this final relaxation: rather than searching over all metrics, we search
over a class of metrics known as negative type metrics. These metrics are obtained by squaring a
Euclidean metric, so they are also known as ¢3-metrics. Optimizing over negative type metrics is
captured by the following semidefinite program, where each i € V corresponds to a vector x; € R™:

(SDP): min Y (i, j)||xi — x|
(i,j)eE

¥l = 1
L]

Hxi — X]‘HZ—I— HX] —ka2 > ||x1' —kaZ Vl,],k eV
x> <1 VieV

Triangle inequality constraints: Notice that (SDP) explicitly contains the constraints for the triangle
inequality, in contrast to the SDP for maximum cut that we saw in Lecture 22. The reason for this is
that without them, (SDP) would have an Q)(n) integrality gap (which is even worse than the LP).

25-1

Consider the cycle on 1 vertices, which has sparsity ©(1/n?). Without the triangle inequality,
we can map each vertex uniformly on the unit circle. In this case, we have

() e (3)
Xi—xi||T=|—) n=0(-).
X l=x € -

On the other hand, the denominator of the sparsity obtained by our SDP solution is

¥ -l =0 ().

ijeV

Therefore, the sparsity achieved by the SDP is ®(1/1%), proving that the integrality gap of (SDP)
without triangle inequality constraints is ().

By enforcing the triangle inequality on our ¢3-metric, the resulting vectors cannot be too far
apart. More specifically, there cannot be an obtuse angle formed between any two vectors. To
maximize the number of such vectors in d-dimensional space, it can be shown that the endpoints of
these vectors are the corners of the d-dimensional hypercube.

Rounding to a cut: We now describe how we round a solution of (SDP) to a sparse cut. Intuitively,
if we round according to some random procedure, we want the probability edge (i, j) is cut to be
roughly ||x; — x; H2 We also want both sides of our cut to have roughly the same size.

To formalize this intuition, we first establish some notation. Suppose we have an optimal
solution x1,...,x, of (SDP). Let i be a vertex and A be a subset of vertices. Then d(i,A) =
min]-e A Hxi — X; ‘2 denotes the distance from i to A, and B(A, r) denotes the set of vertices whose
distance from A is at most r, i.e.,, B(A,r) = {i € V : d(i, A) < r}. Ideally, we’d like to find a large
subset A of vertices whose distance to other vertices is also large. In this case, we can pick a random
superset of A as our cut; the following lemmma formalizes this idea.

Lemma 1. Suppose there exists A C V such that |A| > anand Y ;.\, d(i, A) > B/n. Let r € (0,1) be the
parameter that minimizes the sparsity of the cut B(A,r). Then B(A,r) is an O(1/ap)-approximation for
the sparsest cut problem.

Proof. We prove this as follows: choose a radius r uniformly at random in the interval (0,1) and
consider an edge (i,]) such that d(i, A) < d(j,A). Since r is chosen uniformly at random, the
probability that (7, j) is cut is given by the following:

2
, (1)
where the inequality holds because our solution to (SDP) satisfies the triangle inequality. Thus, we
can bound the expectation of the numerator in our sparsity:

Pr ((i,j) € 3(B(A,))) = Pr(d(i, A) < r < d(j, A)) < |[x —

EM@MMMﬁ(?C@MW—%W 2)
i,j)€E

Now we bound the expectation of the denominator in the sparsity expression. This term is the sum
of all pairwise distances; instead of summing over all pairs, we can sum one index over the vertices

25-2

in A. In other words, we have the following;:

Y =l

i,jeVv

E > Y Y Pr(j ¢ B(A,r))

i€AjeV
= |A| L Pr(r < d(j, 4))
]
= || L d(j, A)
]

> ap.

where the first inequality follows from (1) and the final inequality follows from the assumptions in
the lemma. By combining this with (2), we have shown that if 7 is chosen uniformly at random,
then the ratio of the expectations is at most 1/&p times the optimal (SDP) value. Thus, there must
exist some radius in (0, 1) that achieves this sparsity, as desired. O

To turn Lemma 1 into our algorithm, we must consider two cases. The easier case is when there
exists a ball known as a “dense core.” In this case, this ball can act as the A in Lemma 1 and we
can show that & and f are both constants, so our algorithm is actually O(1)-approximate. In the
other case, there is no such ball; the analysis of this case is trickier and relies on deeper structural
properties of our solution.

Case 1 (Dense core exists): Suppose there exists a vertex i* € V such that the ball centered at
i* with radius 1/8n? contains at least 11/4 vertices. In this case, we set A as this ball and apply
Lemma 1 so that « = 1/4. Now for any two vertices i, j outside A, we have

dij —) <d(i,A)+d(j,A)

by the triangle inequality and the fact that the radius of A is 1/8n2. Summing over all pairsi,j € V
and noting) ; ;d;; > 1 because our solution is feasible, we see that

1 1)
1-2< iz <dij - 4nz> <n)_ d(i,A),
JEV eV
so we can set = 7/8. Since a and B are both constants, by Lemma 1, we have a constant-
approximate solution to the sparsest cut problem.

Case 2 (No dense core): Intuitively, we cannot easily find a candidate for the set A in Lemma 1,
but we can find two large subsets that are far apart from each other. We then set A as one of these
subsets so that « is a constant while 8 depends on how large the distance is between S and T.

Lemma 2. If no dense core exists, then there exist S, T C V such that |S|,|T| = Q(n) and d(S,T) > A/n?
where A = ©(1//logn).

Before sketching the proof of this claim, we first formalize the intuition stated above. Set A = S
for Lemma 1, so that &« = (3(1) and we have the following:

S d(,A) > Y d(i, Ay =Q(n)- S =0 <A> .

7 =
iev i€B n n

Thus, we can set B = A = ©(1//logn) to obtain an O(/log n)-approximate solution.

25-3

Proof sketch of Lemma 2. Intuitively, we want vectors corresponding to S to be far apart from the
vectors corresponding to T. Recall that all of the vectors in the solution to (SDP) are contained in
the n-dimensional unit ball. To find S and T, we will construct what is known as a fat hyperplane.
Then S and T contain the vectors lying on the two sides of the hyperplane. (As we saw in Lecture
22, the rounding scheme for the maximum cut problem uses a thin hyperplane.)

If the hyperplane is very fat, then d(S, T) will be large, but if it is too fat, then |S| and |T| will be
too small. To strike this balance, we randomly pick a hyperplane-defining vector according to a
Gaussian distribution, and with high probability, we'll have |S|, |T| = Q(n).

However, unless we increase the width of the hyperplane, (S, T') might be too small. To remedy
this, we iteratively remove violating pairs (s, t) € S x T, i.e., such pairs satisfy d(s,t) < A/n? until
no violating pairs remain. The remaining subsets are sufficiently separated from each other, but
now they might be too small.

Notice that we can think of our pair-removal process as removing a maximal matching from
a bipartite graph. The size of this matching is roughly c;n for some constant ¢, and the closest
distance between any (s, t) pair is coA/n for some constant ¢;. As we decrease ¢, by iteratively
removing violating pairs, the bipartite graph becomes sparser, so c; also decreases.

Importantly, both c; and c; are independent of S and T. Thus, at some point, we can decrease
these two constants until the value of ¢; is smaller than the constants that appear in the |S|, |T| =
Q) (n) guarantee. At this point, we can safely remove the remaining vertices without asymptotically
decreasing |S| and |T|, whose values remain sufficiently large.

Ul

3 Summary
In this lecture, we concluded our study of the sparsest cut problem. In particular, we showed how

we can overcome the ()(log n) integrality gap of the LP relaxation via an SDP relaxation. We then
sketched the algorithm of Arora, Rao and Vazirani [ARV09] that is an O(+/log n)-appoximation.

References

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

25-4

	Overview
	SDP for Sparsest Cut
	Negative Type Metrics

	Summary

