
COMPSCI 638: Graph Algorithms September 13, 2019

Lecture 6
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we give another rounding scheme for the multicut problem and bound its perfor-
mance. We then study the sparsest cut problem and give an algorithm that reduces the problem to
the multicut problem.

2 The Multicut Problem

Recall that the multicut problem is the following: we are given a graph G = (V, E) with edge costs
c(e) and a set of source-sink pairs (si, ti) for i ∈ {1, . . . , k}. Our goal is to find a minimum-cost
subset of edges whose removal separates si from ti for every i.

In the linear program relaxation, we seek to find edge lengths to minimize the total volume
while ensuring that the distance from each si to ti is at least 1. Letting P denote the set of all si-ti
paths, this is the following:

(LP): min ∑
e∈E

c(e)`e

∑
e∈p

`e ≥ 1 ∀p ∈ P

`e ≥ 0 ∀e ∈ E

Recall that we interpret the objective of this linear program as a volume minimization by considering
each edge e as a pipe with width c(e) and length `e.

2.1 The GVY Algorithm

Before we describe the “region-growing” algorithm of Garg et al. [GVY96], we must first establish
some notation. Given a solution ` to (LP), let d(x, y) denote the shortest distance from x to y under
`. Furthermore, for any r ≥ 0, we let Si(r) = {v : d(si, v) ≤ r} and for any S ⊆ V, we set

δ(S) = {(u, v) ∈ E : u ∈ S, v 6∈ S}
I(S) = {(u, v) ∈ E : u, v ∈ S}.

For any subset F of edges, we let c(F) denote the total cost of edges in F. Finally, we let V∗ denote
the optimal objective value achieved by (LP) and for any i ∈ {1, . . . , k} and r ∈ [0, 1/2), we
define Vi(r) as the total volume of pipes within Si(r), as well as 1/k of the optimal volume. More
specifically, we set

Vi(r) =
V∗

k
+ ∑

e∈I(Si(r))
c(e)`e + ∑

e=(x,y)∈δ(Si(r))
x∈Si(r),y 6∈Si(r)

c(e)(r− d(si, x)).

6-1

We will later give the reasoning behind the V∗/k term. The second term adds the volume of pipes
entirely contained in Si(r), and the final term adds the portion of the volume of pipes partially
contained in Si(r). We now state the key lemma behind the GVY algorithm.

Lemma 1. For every i, there exists ri < 1/2 such that c(δ(Si(ri))) ≤ 2 ln(2k)Vi(ri).

And with this lemma, we are now ready to state the GVY algorithm.

Algorithm 1 The GVY Algorithm for the Multicut problem

1: Solve (LP) to obtain an optimal edge lengths
2: F ← ∅
3: for i = 1, . . . , k do
4: if si and ti are connected in (V, E \ F) then
5: Choose ri as in Lemma 1
6: F ← F ∪ δ(Si(ri))
7: Remove Si(r) and its incident edges from the graph
8: return F

Lemma 2. The output of Algorithm 1 is a feasible multicut.

Proof. For contradiction, suppose sj is connected to tj for some j upon the removal of F. This
implies sj and tj were both in some ball Si(r) when the vertices of this ball were removed from the
graph. But this violates the triangle inequality and feasibility of the edge lengths.

Now before proving Lemma 1, we use it to bound the approximation ratio of Algorithm 1.

Theorem 3. Algorithm 1 is an O(log k)-approximation for the multicut problem.

Proof. Let Fi denote the set of edges added to F in the i-th iteration of the algorithm, and let Mi
denote the total volume of edges removed when we remove Si(r) and its incident edges from the
graph. Then notice that

c(Fi) ≤ 2 ln(2k)Vi(ri) ≤ 2 ln(2k)
(

Mi +
V∗

k

)
, (1)

where the first inequality follows from Lemma 1 and the second inequality holds because Mi
considers the entire volume of its edges while Vi(ri) only considers a portion of some edges. Now
notice that an edge contributes to at most one Mi because an edge can only be removed from the
graph at most once; this implies ∑k

i=1 Mi ≤ V∗. With this observation, we can sum (1) across all i
and conclude

c(F) =
k

∑
i=1

c(Fi) ≤ 2 ln(2k)
k

∑
i=1

(
Mi +

V∗

k

)
≤ 4 ln(2k)V∗ = O(log k)V∗.

We end this section with a proof of Lemma 1.

Proof of Lemma 1. The key observation is that the change in the volume of Si(r), with respect to r, is
precisely the capacity of δ(Si(r)). More formally, we have

dVi(r)
dr

= c(δ(Si(r))).

6-2

For contradiction, suppose there exists an i such that for every r ∈ [0, 1/2), we have

c(δ(Si(ri)))

Vi(ri)
=

dVi(r)
dr

· 1
Vi(ri)

> α,

where α = 2 ln(2k) denotes our approximation ratio. Rearranging and integrating both sides yields∫ V1/2

V0

1
Vi(ri)

dVi(r) >
∫ 1/2

0
α dr ,

where V0 denotes the initial volume (i.e., V0 = V∗/k) at each si, and V1/2 denotes the volume
of Si(r) when r = 1/2. Computing the integrals gives us ln(V1/2/V0) > α/2, and substituting
V1/2 ≤ kV0 + V∗ gives us

α < 2 ln
(

kV0 + V∗

V0

)
= 2 ln

(
k +

V∗

V0

)
. (2)

Looking at (2), we see why we had set V0 = V∗/k: this is done in order to minimize the competitive
ratio α. Substituting α = 2 ln(2k) and V0 = V∗/k into (2) yields the desired contradiction.

3 Sparsest Cut

We transition towards studying a new problem known as the sparsest cut problem. Before formally
defining this problem, let us first recall the maximum concurrent flow problem: given a graph
G = (V, E) with edge costs c(e) and source-sink pairs (si, ti) for i = 1, . . . , k, find a flow that
maximizes minimum amount of flow between every source-sink pair.

Recall that we let Pi denote the set of si-ti paths, and P denote the set of all source-sink paths.
The corresponding linear program is the following:

(P): max λ

∑
p∈Pi

fp ≥ λ ∀i ∈ {1, . . . , k}

k

∑
i=1

∑
p∈Pi
p3e

fp ≤ c(e) ∀e ∈ E

fp ≥ 0 ∀p ∈ P

And the dual is the following:

(D): min ∑
e∈E

c(e)`e

∑
e∈p

`e ≥ λi ∀i, ∀p ∈ Pi

k

∑
i=1

λi ≥ 1

λi, `e ≥ 0 ∀i, ∀e ∈ E

6-3

Notice that in (D), we have increased the flexibility of the constraint compared to the multicut
linear program. Now, the distance between si and ti must be at least λi ≥ 0, but the sum of the λi
must be at least one.

Now instead of viewing the problem (D) as obtaining an edge length function `, we can
equivalently view the variables as d(x, y) for every x, y ∈ V. The variable d must be a metric, and
in this case, λi would be the shortest si-ti distance. Thus, (D) is equivalent to

(D-SC): min ∑
e=(x,y)∈E

c(e)d(x, y)

k

∑
i=1

d(si, ti) ≥ 1

d is a metric

The Sparsest Cut Problem: We are given a graph G = (V, E) with edge costs c(e). Our goal is to
find S ⊂ V that minimizes the sparsity of S, defined as c(δ(S))/p(S), where p(S) = |S| · |V \ S|.
Notice that this is a “normalized” version of (D-SC): set every x 6= y ∈ V as a source-sink pair;
given S, set d(x, y) = 1 if |S ∩ {x, y}| = 1 and 0 otherwise; and notice p(S) = ∑i d(si, ti) is the
number of pairs separated by S. In general, however, (D-SC) searches over all metrics while the
sparsest cut problem is restricted to metrics of the form described above.

We remark that this problem is also known as the uniform sparsest cut problems since all pairs
are treated equally. Furthermore, in some contexts, the denominator is min{|S|, |V \ S|}, but it is
not hard to show that |V| times this is always within a factor 2 of |S| · |V \ S|, and for our purposes,
losing a factor of 2 is not critical.

We now show that the optimum value of (D-SC) provides a lower bound on the sparsity of the
sparsest cut. In other words, (D-SC) is indeed a relaxation of the sparsest cut problem.

Fact 4. Let D∗ denote the optimum value of (D-SC) where every x 6= y ∈ V is a source-sink pair. Then

D∗ ≤ min
S⊂V

c(δ(S))
p(S)

,

where p(S) denotes the number of (si, ti) pairs separated by S.

Proof. Let S ⊂ V be any cut, and consider the following solution to (D-SC): set d(x, y) = 1/p(S) if
|S ∩ {x, y}| = 1 and 0 otherwise. Then d is a feasible solution to (D-SC), and the objective value
obtained by d is precisely c(δ(S))/p(S), i.e., the sparsity of S.

3.1 Reduction to Multicut

In this section, we give an algorithm for the sparsest cut problem by reducing it to the multicut
problem. Intuitively, we will find a subset of source-sink pairs that are sufficiently far apart. We
then invoke a multicut rounding algorithm on this subset to obtain a multicut solution for these
pairs. Finally, we return the sparsest cut generated by this solution. Recall that for any k ≥ 1, we let
Hk = 1 + 1/2 + · · ·+ 1/k denote the k-th Harmonic number.

6-4

Lemma 5. Let d∗ be an optimal solution to (D-SC). Then there exists S ⊆ {(si, ti)}k
i=1 such that

d∗(si, ti) ≥
1

H(n
2)
· |S|

for every (si, ti) ∈ S.

Before proving this lemma, we state the reduction algorithm and bound its performance.

Algorithm 2 Reducing Sparsest Cut to Multicut

1: d∗ ← optimal solution to (D-SC)
2: S← subset of pairs as in Lemma 5
3: d′ ← d · H(n

2)
· |S|

4: Run GKY (or CKR) rounding on d′ to obtain a subset of edges F
5: X ← the minimum-sparsity connected component produced by F
6: return X

Theorem 6. Algorithm 2 is an O(log2 n)-approximation for the sparsest cut problem.

Proof. From Lemma 5, we know that every pair in S has distance at least 1 with respect to d′, which
means F is a multicut solution that separates the pairs in S. Although F is not necessarily a cut,
from the performance guarantee of the rounding, we have

c(F) = ∑
e∈F

c(e)

= O(log k) · ∑
e=(x,y)∈E

c(e)d′(x, y)

= O(log k)H(n
2)
· |S| · ∑

e=(x,y)∈E
c(e)d∗(x, y)

= O(log2 n) · |S| · D∗,

where D∗ denotes the optimal value of (D-SC). Since F separates at least the pairs in |S|, the
“sparsity” of F (recall that F is not necessarily a cut) is

c(F)
p(F)

=
O(log2 n) · |S| · D∗

|S| = O(log2 n) · D∗.

Our final step is to bound the sparsity of X, and we do this by an averaging argument. Let
X1, . . . , Xr denote the connected components produced by F, and notice that

c(δ(X1)) + · · ·+ c(δ(Xr))

p(X1) + · · ·+ p(Xr)
=

2c(F)
2p(F)

= O(log2 n) · D∗.

The first equality holds in both the numerator and denominator because every edge/pair cut/separated
by F is also cut/separated by exactly two connected components. By a standard averaging argu-
ment, this implies that the sparsity of X is O(log2 n) · D∗, as desired.

We now prove Lemma 5.

6-5

Proof of Lemma 5. Rename the source-sink pairs so that

d∗(s1, t1) ≥ d∗(s2, t2) ≥ · · · ≥ d∗(sk, tk),

and let Sj = {(si, ti)}i
j=1. For contradiction, assume that the lemma is false for every subset of pairs.

In particular, S1 is not satisfying, which implies

d∗(s1, t1) <
1

H(n
2)

.

Similarly, S2 is not a solution, which implies

d∗(s2, t2) <
1

H(n
2)
· 1

2
.

Extending this reasoning to all k = (n
2) source-sink pairs, we get

k

∑
i=1

d∗(si, ti) <
1

H(n
2)

(
1 +

1
2
+

1
3
+ · · ·+ 1

(n
2)

)
= 1,

violating the constraint of (D-SC), so in fact, some Sj must satisfy the lemma.

4 Summary

In this lecture, we saw the GVY region-growing technique applied to the multicut problem. We
also showed the relationship between the maximum concurrent flow problem to the sparsest cut
problem and gave a reduction for this problem to the multicut problem.

References

[GVY96] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-
(multi) cut theorems and their applications. SIAM Journal on Computing, 25(2):235–251,
1996.

6-6

	Overview
	The Multicut Problem
	The GVY Algorithm

	Sparsest Cut
	Reduction to Multicut

	Summary

