
Relational
Model and Algebra

Introduction to Databases
CompSci 316 Fall 2020

Announcements (Thu. Aug. 20)
• Project details posted on Sakai

• Read it carefully!
• Think about fixed vs. open project (some project videos from last

semester will be available on sakai soon – keep them private)
• Roster for discussion sessions available on sakai (teammates have to be

from the same discussion session)
• You do not have to form your teams or decide fixed/open projects right

now. Names of team members and project choices are due on 9/8, so
you will have some time (and the class/discussion sections are still in
flux)

• Survey has been sent – Due by tomorrow 08/21 night EDT
• To know about your time zones, expectations, available resources,

project / team-member preference etc.
• Please respond on time – there is a 2% weight for communication!

• Monday’s discussion sessions: Installation and practice SQL
• Emails coming soon

2

Today’s plan

• Revisit relational model
• Simple SQL queries and its semantic
• Start relational algebra

3

The famous “Beers” database
4

Bar
Each has an address

Drinker
Each has an address

Beer
Each has a brewer

Drinker Frequents Bars
“X” times a week

Bar Serves Beer
At price “Y”

Drinker Likes Beer

Your database for HW1!

“Beers” as a Relational Database
5See online database for more tuples

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge
108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

Bar

Beer

Drinker

Likes

Frequents

Serves

What is an example of a

• Relation
• Attribute
• Tuple
• Schema
• Instance

What is

• Set semantic
• in relational model

• Bag semantic
• In SQL (why)

“Beers” as a Relational Database
6See online database for more tuples

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge
108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

Bar

Beer

Drinker

Likes

Frequents

Serves

What is an example of a

• Relation
• Attribute
• Tuple
• Schema
• Instance

What is

• Set semantic
• in relational model

• Bag semantic
• In SQL (why)

• Set semantic
• No duplicates, Order of tuples does not matter

• Bag semantic
• Duplicates allowed, for efficiency and flexibility
• Do not want duplicates? Use SELECT DISTINCT …

Basic queries: SFW statement

• SELECT 𝐴!, 𝐴", …, 𝐴#
FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

• SELECT, FROM, WHERE are often referred to as
SELECT, FROM, WHERE “clauses”

• Each query must have a SELECT and a FROM

• WHERE is optional

7

In HW1, you can only use SFW

Example: reading a table

• SELECT *
FROM Serves

• Single-table query
• * is a shorthand for “all columns”

8

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Example: ORDER BY

• SELECT *
FROM Serves
ORDER BY beer

• Equivalent to “ORDER BY beer asc” (asc is default option)
• For descending order, use “desc”
• Can combine multiple orders
• What does this return?
• ORDER BY beer asc, price desc

9

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Example: some columns and DISTINCT

• SELECT beer
FROM Serves

• Only want unique values? Use DISTINCT

• SELECT DISTINCT beer
FROM Serves

10

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Returns a set

Returns a bag

Example: selecting few rows
• SELECT beer AS mybeer

FROM Serves
WHERE price < 2.75

• SELECT S.beer
FROM Serves S
WHERE bar = ‘The Edge’

11

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

• SELECT list can contain expressions
Can also use built-in functions such as SUBSTR, ABS, etc.

• NOT EQUAL TO: Use <>
• LIKE matches a string against a pattern

% matches any sequence of zero or more characters

What does these return?

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

• Which tables do we need?

12

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

13

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge
108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

Bar

Beer

Drinker

Likes

Frequents

Which tables
do we need?

How do we
combine them?

Example: Join
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

14

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents

Semantics of SFW
• SELECT 𝐸!, 𝐸", …, 𝐸#

FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
• For each 𝑡! in 𝑅!:

For each 𝑡" in 𝑅": … …
For each 𝑡$ in 𝑅$:

If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡!, 𝑡", …, 𝑡$:

Compute and output 𝐸!, 𝐸", …, 𝐸# as a row

15

1. Apply “FROM”
Form “cross-product” of R1, .., Rm

2. Apply “WHERE”
Only consider satisfying rows

3. Apply “SELECT”
Output the desired columns

Step 1: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” it
outputs!

16

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Form a “Cross product” of two relations

Step 2: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” it
outputs!

17

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Discard rows that do not satisfy WHERE condition

Step 3: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” it
outputs!

18

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Output the “address” output of rows that survived

Final output: Illustration of Semantics of
SFW
• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” it

outputs!

19

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

address

108 Morris
Street

905 W.
Main Street

Output the “address” output of rows that survived

SQL vs. C++, Java, Python…
20

SQL vs. C++, Java, Python…

SQL is declarative
• Programmer specifies what answers a query should return,
• but not how the query is executed
• DBMS picks the best execution strategy based on

availability of indexes, data/workload characteristics, etc.
• Not a “Procedural” or “Operational” language like C++,

Java, Python
• There are several ways to write a query, but equivalent

queries always provide the same (equivalent) results
• SQL (+ its execution and optimizations) is based on a strong

foundation of “Relational Algebra”

21

Relational algebra

A language for querying relational data
based on “operators”

22

RelOp

RelOp

• Core operators:
• Selection, projection, cross product, union, difference,

and renaming

• Additional, derived operators:
• Join, natural join, intersection, etc.

• Compose operators to make complex queries

Selection
• Input: a table 𝑅
• Notation: 𝜎!𝑅

• 𝑝 is called a selection condition (or predicate)

• Purpose: filter rows according to some criteria
• Output: same columns as 𝑅, but only rows of 𝑅 that satisfy 𝑝

(set!)

23

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves
bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

𝝈𝒑𝒓𝒊𝒄𝒆&𝟐.𝟕𝟓 Serves

Example: Find beers with price < 2.75

Equivalent SQL query?No actual deletion!

More on selection
• Selection condition can include any column of 𝑅, constants,

comparison (=, ≤, etc.) and Boolean connectives (∧: and, ∨:
or, ¬: not)
• Example: Serves tuples for “The Edge” or price >= 2.75

𝜎#$%&!'() *+,)!∨!%./) 0 1.34 𝑆𝑒𝑟𝑣𝑒𝑠
• You must be able to evaluate the condition over each single

row of the input table!
• Example: the most expensive beer at any bar

𝜎!%./) 0)5)%6 !%./) .7 8)%5)9 𝑈𝑠𝑒𝑟

24

WRONG!

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Projection

• Input: a table 𝑅
• Notation: 𝜋&𝑅
• 𝐿 is a list of columns in 𝑅

• Purpose: output chosen columns
• Output: same rows, but only the columns in 𝐿 (𝑠𝑒𝑡!)

25

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves 𝝅𝒃𝒆𝒆𝒓,𝒑𝒓𝒊𝒄𝒆 Serves

Example: Find all the prices for each beer

beer price

Budweiser 2.50

Corona 3.00

Budweiser 2.25

Output of 𝜋#))%Serves?

End of lecture 08/20

Cross product
• Input: two tables 𝑅 and 𝑆
• Natation: 𝑅×𝑆
• Purpose: pairs rows from two tables
• Output: for each row 𝑟 in 𝑅 and each 𝑠 in 𝑆, output a row 𝑟𝑠

(concatenation of 𝑟 and 𝑠)

26

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan
The Edge

1

The Edge 108 Morris
Street

Dan
Satisfaction

2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan
The Edge

1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Bar x Frequents

Note: ordering
of columns does
not matter,
so R X S = S X R
(commutative)

Derived operator: join
(A.k.a. “theta-join”: most general joins)
• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ⋈! 𝑆

• 𝑝 is called a join condition (or predicate)

• Purpose: relate rows from two tables according to some
criteria

• Output: for each row 𝑟 in 𝑅 and each row 𝑠 in 𝑆, output a
row 𝑟𝑠 if 𝑟 and 𝑠 satisfy 𝑝

• Shorthand for 𝜎! 𝑅×𝑆

Predicate p only has conjunctions of equality
e.g., (A1 = A2) ∧ (B1 = B2) ∧ (C1 = C2) : equijoin

27

One of the most important
operations!

Join example

• Extend Frequents relation with addresses of the bars
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 ⋈*+,-#+$. 𝐵𝑎𝑟

28

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Ambiguous attribute?
Use Bar.name

Join Types

• Theta Join

• Equi-Join

• Natural Join

• Later, (left/right) outer join, semi-join

29

Derived operator: natural join

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ⋈ 𝑆 (i.e. no subscript)
• Purpose: relate rows from two tables, and
• Enforce equality between identically named columns
• Eliminate one copy of identically named columns

• Shorthand for 𝜋& 𝑅 ⋈/ 𝑆 , where
• 𝑝 equates each pair of columns common to 𝑅 and 𝑆
• 𝐿 is the union of column names from 𝑅 and 𝑆 (with

duplicate columns removed)

30

Natural join example
31

Serves ⋈ 𝐿𝑖𝑘𝑒𝑠
= 𝜋? 𝑆𝑒𝑟𝑣𝑒𝑠 ⋈? 𝐿𝑖𝑘𝑒𝑠
= 𝜋#$%,#))%,!%./),+%.7=)% 𝑆𝑒𝑟𝑣𝑒𝑠 ⋈8)%5)9.#))%&

>.=)9.#))%
𝐿𝑖𝑘𝑒𝑠

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

LikesServes

bar beer price drinker

The Edge Budweiser 2.50 Dan

The Edge Budweiser 2.50 Ben

The Edge Corona 3.00 Amy

The Edge Corona 3.00 Dan

... …. …..

Natural Join is on beer

Only one column for beer
in the output

What happens if the tables
have two or more common columns?

Serves ⋈ 𝐿𝑖𝑘𝑒𝑠

Union

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ∪ 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows in 𝑅 and all rows in 𝑆 (with duplicate

rows removed)

32

Example on board

Important for set operations:

Union Compatibility

Difference

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 − 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows in 𝑅 that are not in 𝑆

33

Example on board

Important for set operations:

Union Compatibility

Derived operator: intersection

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ∩ 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows that are in both 𝑅 and 𝑆

• How can you write it using other operators?

• Shorthand for
• Also equivalent to 𝑆 − 𝑆 − 𝑅
• And to 𝑅 ⋈ 𝑆

34

𝑅 − 𝑅 − 𝑆

Important for set operations:

Union Compatibility

Expression tree notation
35

𝐵𝑎𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠

⋈!"#$%&"'

𝜋"(('$))

Also called logical
Plan tree

• Find addresses of
all bars that ‘Dan’
frequents

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

𝜋 $++%)99
𝐵𝑎𝑟 ⋈7$E) &

#$%
(𝜎+%.7=)%&!F$7G𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠)

Equivalent to

𝜎+%.7=)%&!F$7G

What if you move 𝜎 to the top?
Still correct?

More or less efficient?

Using the same relation multiple times
36

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents• Find drinkers
who frequent
both “The
Edge” and
“Satisfaction”

𝜋0,1#2., 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 ⋈ *+,-"34. 506."∧
*+,-"8+91:;+<91=#"∧
0,1#2.,-0,1#2.,

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠
WRONG!

𝜋0!
𝜌>! 0!,*!,9! 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠

⋈*!-"34. 506."∧*"-"8+91:;+<91=#"∧0!-0"
𝜌>" 0!,*!,9! 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠

Rename!

Renaming
• Input: a table 𝑅
• Notation: 𝜌8 𝑅, 𝜌 I",I#,… 𝑅, or 𝜌8 I",I#,… 𝑅
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as 𝑅, but called

differently
• Used to

• Avoid confusion caused by identical column names
• Create identical column names for natural joins

• As with all other relational operators, it doesn’t modify the
database
• Think of the renamed table as a copy of the original

37

Summary of core operators

• Selection: 𝜎/𝑅
• Projection: 𝜋&𝑅
• Cross product: 𝑅×𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Renaming: 𝜌8 @#,@$,… 𝑅
• Does not really add “processing” power

38

Summary of derived operators

• Join: 𝑅 ⋈/ 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Intersection: 𝑅 ∩ 𝑆

• Many more
• Semijoin, anti-semijoin, quotient, …

39

Announcements (Tue. Aug. 25)
• Reminder:
• Post all questions about lectures/HW on piazza and answer

each other’s questions!
• Remember to sign in while watching recordings

• Everyone: please try for today’s lecture by tomorrow (Wed) night

40End of lecture 08/25

Exercise

• Bars that drinkers in address “300 N. Duke Street”
do not frequent

41Frequents(drinker, bar, times_of_week)
Bar(name, address)
Drinker(name, address)

Exercise

• Bars that drinkers in address “300 N. Duke Street”
do not frequent

42

Bars that the drinkers at this
address frequentAll bars

−

𝜋!"#$

𝐵𝑎𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠

𝐷𝑟𝑖𝑛𝑘𝑒𝑟

⋈ 𝑑𝑟𝑖𝑛𝑘𝑒𝑟 = 𝑛𝑎𝑚𝑒

𝜎!""#$%%&”()) *.,-.$ /0#$$0"

𝜋&"'

Frequents(drinker, bar, times_of_week)
Bar(name, address)
Drinker(name, address)

𝜌&"'

A trickier exercise
• For each bar, find the drinkers who frequent it max no.

times a week
• Who do NOT visit a bar max no. of times?
• Whose times_of_weeks is lower than somebody else’s for a given

bar

43

−

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠

𝜌*+ 𝜌*,

⋈23.045$%67869$$.:2;.045$%67869$$.
∧23.=!#&2;.=!#

𝜋*+.&"',*+.('/!0$'

A deeper question:
When (and why) is “−” needed?

Frequents(drinker, bar, times_of_week)
Bar(name, address)
Drinker(name, address)

𝜋&"',('/!0$'

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠

A trickier exercise
• For each bar, find the drinkers who frequent it max no.

times a week

44Frequents(drinker, bar, times_of_week)
Bar(name, address)
Drinker(name, address)

What if there are different drinkers with the same name
in the Frequents table?

Drinker Bar Times_of_week

Dan The Edge 7

Dan The Edge 5

Joe The Edge 6

What does the previous query return? Empty set

How to fix the query?
1. Project to (drinker, bar, times_a_week) both sides
2. Take difference –
3. Project to (drinker, bar)

Correct answer: (Dan, The Edge)
In general, projection before
and after difference can give
very different results -- check
carefully which one is correct!

Monotone operators

• If some old output rows may need to be removed
• Then the operator is non-monotone

• Otherwise the operator is monotone
• That is, old output rows always remain “correct” when more rows

are added to the input

• Formally, for a monotone operator 𝑜𝑝:
𝑅 ⊆ 𝑅> implies 𝑜𝑝 𝑅 ⊆ 𝑜𝑝 𝑅> for any 𝑅, 𝑅>

45

RelOp
Add more rows

to the input...

What happens
to the output?

Which operators are non-monotone?

• Selection: 𝜎/𝑅
• Projection: 𝜋&𝑅
• Cross product: 𝑅×𝑆
• Join: 𝑅 ⋈/ 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Intersection: 𝑅 ∩ 𝑆

46

Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. 𝑅; non-monotone w.r.t 𝑆

Monotone

Why is “−” needed for “highest”?

• Composition of monotone operators produces a
monotone query
• Old output rows remain “correct” when more rows are

added to the input

• Is the “highest” query monotone?
• No!
• Current highest price 3.0
• Add another row with price 3.01
• Old answer is invalidated

FSo it must use difference!

47

Extensions to relational algebra

• Duplicate handling (“bag algebra”)
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow

new column values to be computed

• (Coming later)

48

