
External Sorting
and

Join Algorithms
Introduction to Databases

CompSci 316 Fall 2020

Announcements (Thu. Oct 8)
• HW-5 + Gradiance-3 (Constraints/Triggers)

• Due now Monday 10/12 -- extended

• Keep working on your project!
• MS-2 due next week (10/15)
• Need to submit a basic working version of your website (all

functionalities not needed, but interactions from/to UI and
databases should be there) + other things

• Will focus on projects in the discussion session on Monday

• Midterm survey due Tue 10/13

2

Notation

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement

3

Recall our disk-memory diagram
On board!

Scanning-based algorithms
4

Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2
• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into

another operator

5

Announcements (Tue. Oct 13)
• Keep working on your project!

• MS-2 due next Monday (10/19)
• Need to submit a basic working version of your website (all

functionalities not needed, but interactions from/to UI and
databases should be there) + other things

• Midterm survey due today Tue 10/13

• HW6 to be posted today, due next Thursday

6

• How do we implement Join?

• Cost?
• (page I/O -- in terms of B(R), |R| etc.)

• Memory requirement?

7

Nested-loop join

𝑅 ⋈! 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join

8

Block-based Nested Loop Join

• 𝑅 ⋈! 𝑆
• R outer, S inner
• For each block of 𝑅, for each block of 𝑆:

For each 𝑟 in the 𝑅 block, for each 𝑠 in the 𝑆
block: …
• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: same as before

9

More improvements

• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + ! "
#$% ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer?

10

Sorting-based algorithms
11

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory

To Understand:

What is a run?
What is a level and a pass?

Reminder: How 2-way merge sort works?
How to extend to multi-way merge sort?

12See example on the next slide first

External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory
• Pass 0: read 𝑀 blocks

of 𝑅 at a time, sort them,
and write out a level-0 run

• Pass 1: merge 𝑀 − 1
level-0 runs at a time,
and write out a level-1 run

• Pass 2: merge 𝑀 − 1 level-1 runs at a time, and write
out a level-2 run

…
• Final pass produces one sorted run

13

Memory
𝑅

Level-0

…

…

… Level-1

Disk

See example on the next slide first

Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
• 1, 7, 4 → 1, 4, 7
• 5, 2, 8 → 2, 5, 8
• 9, 6, 3 → 3, 6, 9

• Pass 1
• 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
• 3, 6, 9

• Pass 2 (final)
• 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

14

Analysis

• Pass 0: read 𝑀 blocks of 𝑅 at a time, sort them, and
write out a level-0 run
• There are ! "

#
level-0 sorted runs

• Pass 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time,
and write out a level-𝑖 run
• 𝑀 − 1 memory blocks for input, 1 to buffer output

• # of level-𝑖 runs = # *+ ,-.-,$ /$0 1234
#$0

• Final pass produces one sorted run

15

Note: The pages of memory are being
reused!
• We just have M memory blocks/pages, whereas the number

of blocks of R can be much larger
• B(R) >> M typically
• Otherwise you will load all pages and sort in memory in a single

pass!

• We need to reuse both input and output pages in memory
• Once the output pages are full, flush them (write) to disk
• Once an input page is fully processed in Pass-1 onward, get the next

page from the same run
• In pass-0, sort M-pages together, reuse the memory pages for the

next M-pages and so on…

• Pass-0 uses an “in-place” sorting algorithm (with constant
additional space), so all M pages can be used

16

Performance of external merge sort

• Number of passes: log*+,
- .
*

+ 1

• I/O’s
• Multiply by 2 ⋅ 𝐵 𝑅 : each pass reads the entire relation

once and writes it once
• Subtract 𝐵 𝑅 for the final pass
• Roughly, this is 𝑂 𝐵 𝑅 ×log#𝐵 𝑅

• Memory requirement:𝑀 (as much as possible)

17

We do not count the final write!

Some tricks for sorting

• Double buffering
• Allocate an additional block for each run
• Overlap I/O with processing
• Trade-off: smaller fan-in (more passes)

• Blocked I/O
• Instead of reading/writing one disk block at time,

read/write a bunch (“cluster”)
• More sequential I/O’s
• Trade-off: larger cluster → smaller fan-in (more passes)

18

Announcements (Thu. Oct 15)
• Keep working on your project!

• MS-2 due next Monday (10/19)
• Need to submit a basic working version of your website (all

functionalities not needed, but interactions from/to UI and
databases should be there) + other things

• HW6 due next Thursday (10/22)

• Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)

• No Gradiance this week.

• Review of clustered/unclustered on Monday

19

Sort-merge join

𝑅 ⋈..012.- 𝑆
• Sort 𝑅 and 𝑆 by their join attributes; then merge

𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆
Repeat until one of 𝑅 and 𝑆 is exhausted:

If 𝑟. 𝐴 > 𝑠. 𝐵 then 𝑠 = next tuple in 𝑆
else if 𝑟. 𝐴 < 𝑠. 𝐵 then 𝑟 = next tuple in 𝑅
else output all matching tuples, and
𝑟, 𝑠 = next in 𝑅 and 𝑆

• I/O’s: sorting + 2𝐵 𝑅 + 2𝐵 𝑆 (always?)
• In most cases (e.g., join of key and foreign key)
• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins

20

Example of merge join

𝑅: 𝑆: 𝑅 ⋈..012.- 𝑆:
𝑟,. 𝐴 = 1 𝑠,. 𝐵 = 1
𝑟3. 𝐴 = 3 𝑠3. 𝐵 = 2
𝑟4. 𝐴 = 3 𝑠4. 𝐵 = 3
𝑟5. 𝐴 = 5 𝑠5. 𝐵 = 3
𝑟6. 𝐴 = 7 𝑠6. 𝐵 = 8
𝑟7. 𝐴 = 7
𝑟8. 𝐴 = 8

21

𝑟,𝑠,
𝑟3𝑠4
𝑟3𝑠5
𝑟4𝑠4
𝑟4𝑠5
𝑟8𝑠6

Optimization of SMJ
• Idea: combine join with the (last) merge phase of merge sort
• Sort: produce sorted runs for 𝑅 and 𝑆 such that there are

fewer than 𝑀 of them total
• Merge and join: merge the runs of 𝑅, merge the runs of 𝑆, and

merge-join the result streams as they are generated!

22

Merge

MergeSo
rt

ed
 ru

ns 𝑅

𝑆

Disk Memory

Join

Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆 - why 3?
• Memory requirement

• We must have enough memory to accommodate one block
from each run: 𝑀 > ! "

#
+ ! $

#
• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆

• If SMJ cannot complete in two passes:
• Repeatedly merge to reduce the number of runs as

necessary before final merge and join

23

Other sort-based algorithms

• Union (set), difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort, by group-by columns

• Trick: produce “partial” aggregate values in each run, and
combine them during merge
• This trick doesn’t always work though

• Examples: SUM(DISTINCT …), MEDIAN(…)

24

Hashing-based algorithms
25

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈..012.- 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they

don’t join

26

Nested-loop join
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash
function on their join attributes

27

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …

Probing phase

• Read in each partition of 𝑅, stream in the
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

28

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

Example
• R(A),	S(B)
• R ⋈!.#$%.& S
• B(R) = 6
• B(S) = 9
• M = 4
• Each page of

R, S contains
just one
record

• Hash function
for
partitioning h
= A % 3 (for
R), B% 3 for S

• Hash function
for probing
h2 = A % 2 (for
R), B% 2 for S

29

M = 4 main memory pages
1 for input, 3 for hash buckets

Disk

Disk

Original
Relation R, S OUTPUT

3 6

4 7 13

1

17

INPUT

0

hash
function
h = %3 2

Partitions

0

1

2

3
4
6

6 9 15

1 4

2 2 14 8

SR

Partitions
of R & S

Input page
for Si

Hash table for partition-0
Of R

6 3

(6, 6)

(6, 6)

Output
page

Disk

Join Result
at the endhash

fn

h2 = %2

h2 = %2

B-1

Partitioning for R done, next similar for S

1.
Pa

rt
iti

on
in

g
ph

as
e

2.
 P

ro
bi

ng
 p

ha
se

17
7
13

6

9

15

1

4

2

2

14

8

3 6

4 7 13

17

0

1

2

6 9 15

1 4

2 2 14 8
M = 4 main memory pages
1 for S pages (one by one), one for output,
3 for hash table for R-partition using h2

Probing for partition-0 and 1st page of S in partition 0,
Similarly for other pages of S, and for partitions 1 and 2

6

0 1

(4, 4)

2-pass works here as at least one relation
has <= 2 pages in each partition

Performance of (two-pass) hash join

• If hash join completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement:

• In the probing phase, we should have enough memory to fit
one partition of R: 𝑀 − 1 > ! "

#%&
• 𝑀 > 𝐵 𝑅 + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆 + 1

30

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!

• See the duality in multi-pass merge sort here?

31

Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 , 𝐵 𝑆 + 1 < 𝐵 𝑅 + 𝐵 𝑆

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

32

What about nested-loop join?

• May be best if many tuples join
• Example: non-equality joins that are not very selective

• Necessary for black-box predicates
• Example: WHERE user_defined_pred(𝑅. 𝐴, 𝑆. 𝐵)

33

Announcements (Tue. Oct 20)
• HW6a (probs 1, 2) due Thursday (10/22)
• HW6b (prob 3) due next Tuesday (10/27)

• Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)

• No Gradiance this week.

• Review of keys/superkeys/FDs/BCNF on Monday

• Please check all grades posted – regrade requests through
gradescope or Google Form only within a week

34

Other hash-based algorithms

• Just like Sorting!

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns
• Tuples in the same group must end up in the same

partition/bucket
• Keep a running aggregate value for each group

• May not always work

35Check yourself

Index-based algorithms
36

http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎01A 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎0BA 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴) may be useful
• Example: B+-tree index on 𝑅 𝐴, 𝐵
• How about B+-tree index on 𝑅 𝐵, 𝐴 ?

37

Index versus table scan

Situations where index clearly wins:
• Index-only queries which do not require retrieving

actual tuples
• Example: 𝜋6 𝜎678 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

38

Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎0BA 𝑅 and a secondary, non-clustered

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣

• Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% 𝑅
• I/O’s for scan-based selection: 𝐵 𝑅
• Table scan wins if a block contains more than 5 tuples!

39

Index nested-loop join

𝑅 ⋈..012.- 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index lookup
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅 is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3

40

Example
• R.A values (1 R-tuple/page): 7, 2, 9, 8, 3

• B(R) = |R| = 5

• B+-tree Index on S.B, 2 S-tuples/data page
• Clustered, 3 levels, all index/data pages in memory
• Assume foreign key S.B to primary key R.A
• Assume each R.A joins with the same no. of S.B
• |S| = 10, B(S) = 5
• Assume matching data entries fit in one leaf
• Each R tuple joins with 2 S tuples that fit in 1 S-page

• Algo:
• For every page of R

• For every tuple of R in that page
• Send the value of R.A as the key value
• Retrieve the matching S records from data pages pointed to by the matching index entries
• Output all of them

• For every R.A value, max cost of accessing matching S tuples = 3 (accessing
leaves) + 1 (accessing data page)

• Total cost of index-nested-loop-join = B(R) + |R| (3+1) = 5 + 5 * 4 = 25

41

2
2

3
3

7
7

8
8

Key = S.B = 9
(say)

2 2 3 3 7 7 8

9
9

8 9 9

Cost of R = B(R) = 5

Total cost for S = |R| * (3 + 1)

Query: 𝑅 ⋈".()$.! 𝑆

Zig-zag join using ordered indexes
𝑅 ⋈*.,-../ 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

42

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

Summary of techniques

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and
aggregation

• Hash
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation

• Index
• Selection, index nested-loop join, zig-zag join

43

