External Sorting and Join Algorithms Introduction to Databases

CompSci 316 Fall 2020

Announcements (Thu. Oct 8)

- HW-5 + Gradiance-3 (Constraints/Triggers)
- Due now Monday 10/12 -- extended
- Keep working on your project!
- MS-2 due next week (10/15)
- Need to submit a basic working version of your website (all functionalities not needed, but interactions from/to UI and databases should be there) + other things
- Will focus on projects in the discussion session on Monday
- Midterm survey due Tue 10/13

Notation

- Relations: R, S

Recall our disk-memory diagram
On board!

- Tuples: r, s
- Number of tuples: $|R|,|S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
- Number of I/O's
- Memory requirement

Scanning-based algorithms

010011101010110101000101010
101010110001010001010100101
D01101010011101011011101000
01010010101101110101000110
10011010100111010110111010
00010100101011011101010001
0101000110100111011010101 ?
10101110101101010011010100
D1010001010100111010101101
0100101101010101101010100
01110101010010101100010110
01000101110101101110101010
D1010111001011011010101011
0101000010100100011010100
010110101100101010111010010
D0101000111010010101101011
01100010101100010100100110
1011010110111010101000101
01110110110101110110101000
01000100100011010100101011
10010010101011101001010100
p01110100101011010101010014

Table scan

- Scan table R and process the query
- Selection over R
- Projection of R without duplicate elimination
- I/O's: B(R)
- Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2
- Not counting the cost of writing the result out
- Same for any algorithm!
- Maybe not needed—results may be pipelined into another operator

Announcements (Tue. Oct 13)

- Keep working on your project!
- MS-2 due next Monday (10/19)
- Need to submit a basic working version of your website (all functionalities not needed, but interactions from/to UI and databases should be there) + other things
- Midterm survey due today Tue 10/13
- HW6 to be posted today, due next Thursday
- How do we implement Join?
- Cost?
- (page I / O-- in terms of $\mathrm{B}(\mathrm{R}),|\mathrm{R}|$ etc.)
- Memory requirement?

Nested-loop join

$R \bowtie_{p} S$

- For each block of R, and for each r in the block: For each block of S, and for each s in the block: Output $r s$ if p evaluates to true over r and s - R is called the outer table; S is called the inner table
- I/O's: $B(R)+|R| \cdot B(S)$
- Memory requirement: 3

Improvement: block-based nested-loop join

Block-based Nested Loop Join

- $R \bowtie_{p} S$
- R outer, S inner
- For each block of R, for each block of S :

For each r in the R block, for each s in the S block: ...

- I/O's: $B(R)+B(R) \cdot B(S)$
- Memory requirement: same as before

More improvements

- Make use of available memory
- Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
- I/O's: $B(R)+\left\lceil\frac{B(R)}{M-2}\right\rceil \cdot B(S)$
- Or, roughly: $B(R) \cdot B(S) / M$
- Memory requirement: M (as much as possible)
- Which table would you pick as the outer?

Sorting-based algorithms

External merge sort

Remember (internal-memory) merge sort?
 Problem: sort R, but R does not fit in memory

To Understand:

What is a run?
What is a level and a pass?

Reminder: How 2-way merge sort works?
How to extend to multi-way merge sort?

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- Pass 1: merge $(M-1)$ level-0 runs at a time, and write out a level-1 run

- Pass 2: merge $(M-1)$ level- 1 runs at a time, and write out a level-2 run
- Final pass produces one sorted run

Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
- 1, 7, $4 \rightarrow 1,4,7$
- 5, 2, $8 \rightarrow 2,5,8$
- 9, 6, $3 \rightarrow 3,6,9$
- Pass 1
- $1,4,7+2,5,8 \rightarrow 1,2,4,5,7,8$
- 3, 6, 9
- Pass 2 (final)
- $1,2,4,5,7,8+3,6,9 \rightarrow 1,2,3,4,5,6,7,8,9$

Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- There are $\left\lceil\frac{B(R)}{M}\right\rceil$ level- 0 sorted runs
- Pass i : merge ($M-1$) level- $(i-1)$ runs at a time, and write out a level-i run
- ($M-1$) memory blocks for input, 1 to buffer output
- \# of level- i runs $=\left\lceil\frac{\# \text { of level-(} i-1 \text { runs }}{M-1}\right\rceil$
- Final pass produces one sorted run

Note: The pages of memory are being reused!

- We just have M memory blocks/pages, whereas the number of blocks of R can be much larger
- $B(R)$ >> M typically
- Otherwise you will load all pages and sort in memory in a single pass!
- We need to reuse both input and output pages in memory
- Once the output pages are full, flush them (write) to disk
- Once an input page is fully processed in Pass-1 onward, get the next page from the same run
- In pass-o, sort M-pages together, reuse the memory pages for the next M-pages and so on...
- Pass-o uses an "in-place" sorting algorithm (with constant additional space), so all M pages can be used

Performance of external merge sort

- Number of passes: $\left\lceil\log _{M-1}\left\lceil\frac{B(R)}{M}\right\rceil\right\rceil+1$
- I/O's
- Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
- Subtract $B(R)$ for the final pass
- Roughly, this is $O\left(B(R) \times \log _{M} B(R)\right)$
- Memory requirement: M (as much as possible)

We do not count the final write!

Some tricks for sorting

- Double buffering
- Allocate an additional block for each run
- Overlap I/O with processing
- Trade-off: smaller fan-in (more passes)
- Blocked I/O
- Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
- More sequential I/O's
- Trade-off: larger cluster \rightarrow smaller fan-in (more passes)

Announcements (Thu. Oct 15)

- Keep working on your project!
- MS-2 due next Monday (10/19)
- Need to submit a basic working version of your website (all functionalities not needed, but interactions from/to UI and databases should be there) + other things
- HW6 due next Thursday (10/22)
- Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)
- No Gradiance this week.
- Review of clustered/unclustered on Monday

Sort-merge join

$R \bowtie_{R . A=S . B} S$

- Sort R and S by their join attributes; then merge $r, s=$ the first tuples in sorted R and S
Repeat until one of R and S is exhausted:
If $r . A>s . B$ then $s=$ next tuple in S
else if $r . A<s . B$ then $r=$ next tuple in R
else output all matching tuples, and $r, s=$ next in R and S
- I/O's: sorting $+2 B(R)+2 B(S)$ (always?)
- In most cases (e.g., join of key and foreign key)
- Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

$$
\begin{aligned}
& R: \\
& r_{1} \cdot A=1 \\
& r_{2} \cdot A=3 \\
& r_{3} \cdot A=3 \\
& r_{4} \cdot A=5 \\
& r_{5} \cdot A=7 \\
& r_{6} \cdot A=7 \\
& r_{7} \cdot A=8
\end{aligned}
$$

$S:$
$\Rightarrow s_{1} \cdot B=1$
$s_{2} \cdot B=2$
$s_{3} \cdot B=3$
$s_{4} \cdot B=3$
$s_{5} . B=8$
$R \bowtie_{R . A=S . B} S:$
$r_{1} s_{1}$
$r_{2} s_{3}$
$r_{2} s_{4}$
$r_{3} s_{3}$
$r_{3} s_{4}$
$r_{7} s_{5}$

Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of SMJ

- If SMJ completes in two passes:
- I/O's: $3 \cdot(B(R)+B(S))$ - why 3 ?
- Memory requirement
- We must have enough memory to accommodate one block from each run: $M>\frac{B(R)}{M}+\frac{B(S)}{M}$
- $M>\sqrt{B(R)+B(S)}$
- If SMJ cannot complete in two passes:
- Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
- More or less like SMJ
- Duplication elimination
- External merge sort
- Eliminate duplicates in sort and merge
- Grouping and aggregation
- External merge sort, by group-by columns
- Trick: produce "partial" aggregate values in each run, and combine them during merge
- This trick doesn't always work though
- Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

Hash join

$R \bowtie_{R . A=S . B} S$

- Main idea
- Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
- If $r . A$ and s. B get hashed to different partitions, they don't join

Nested-loop join considers all slots

Hash join considers only those along the diagonal!

Partitioning phase

- Partition R and S according to the same hash function on their join attributes

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
- Typically build a hash table for the partition of R
- Not the same hash function used for partition, of course!

Partitioning for R done, next similar for S

Probing for partition-o and $1^{\text {st }}$ page of S in partition 0 , Similarly for other pages of S, and for partitions 1 and 2 Partitions

M = 4 main memory pages Disk 1 for S pages (one by one), one for output, 3 for hash table for R-partition using h2

Performance of (two-pass) hash join

- If hash join completes in two passes:
- I/O's: $3 \cdot(B(R)+B(S))$
- Memory requirement:
- In the probing phase, we should have enough memory to fit one partition of R : $M-1>\frac{B(R)}{M-1}$
- $M>\sqrt{B(R)}+1$
- We can always pick R to be the smaller relation, so:

$$
M>\sqrt{\min (B(R), B(S))}+1
$$

Generalizing for larger inputs

-What if a partition is too large for memory?

- Read it back in and partition it again!
- See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
- $\sqrt{\min (B(R), B(S))}+1<\sqrt{B(R)+B(S)}$
- Hash join wins when two relations have very different sizes
- Other factors
- Hash join performance depends on the quality of the hash
- Might not get evenly sized buckets
- SMJ can be adapted for inequality join predicates
- SMJ wins if R and/or S are already sorted
- SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
- Example: non-equality joins that are not very selective
- Necessary for black-box predicates
- Example: WHERE user_defined_pred(R. $A, S . B)$

Announcements (Tue. Oct 20)

- HW6a (probs 1, 2) due Thursday (10/22)
- HW6b (prob 3) due next Tuesday (10/27)
- Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)
- No Gradiance this week.
- Review of keys/superkeys/FDs/BCNF on Monday
- Please check all grades posted - regrade requests through gradescope or Google Form only within a week

Other hash-based algorithms

- Just like Sorting!
- Union (set), difference, intersection
- More or less like hash join
- Duplicate elimination
- Check for duplicates within each partition/bucket
- Grouping and aggregation
- Apply the hash functions to the group-by columns
- Tuples in the same group must end up in the same partition/bucket
- Keep a running aggregate value for each group
- May not always work

Index-based algorithms

Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
- Use an ISAM, B^{+}-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
- Use an ordered index (e.g., ISAM or B^{+}-tree) on $R(A)$
- Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
- Example: B^{+}-tree index on $R(A, B)$
- How about B^{+}-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
- Example: $\pi_{A}\left(\sigma_{A>v}(R)\right)$
- Primary index clustered according to search key
- One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
- Need to follow pointers to get the actual result tuples
- Say that 20% of R satisfies $A>v$
- Could happen even for equality predicates
- I/O's for index-based selection: lookup $+20 \%|R|$
- I/O's for scan-based selection: $B(R)$
- Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

$R \bowtie_{R . A=S . B} S$

- Idea: use a value of R. A to probe the index on $S(B)$
- For each block of R, and for each r in the block: Use the index on $S(B)$ to retrieve s with $s . B=r . A$ Output $r s$
- I/O's: $B(R)+|R| \cdot($ index lookup)
- Typically, the cost of an index lookup is 2-4 I/O's
- Beats other join methods if $|R|$ is not too big
- Better pick R to be the smaller relation
- Memory requirement: 3

Example

- R.A values (1 R-tuple/page): 7, 2, 9, 8, 3
- $B(R)=|R|=5$
- B+-tree Index on S.B, 2 S-tuples/data page
- Clustered, 3 levels, all index/data pages in memory
- Assume foreign key S.B to primary key R.A
- Assume each R.A joins with the same no. of S.B
- $|S|=10, B(S)=5$
- Assume matching data entries fit in one leaf
- Each R tuple joins with 2 S tuples that fit in 1 S-page

- Algo:
- For every page of R Cost of $R=B(R)=5$
- For every tuple of R in that page
- Send the value of R.A as the key value

Total cost for $S=|R| *(3+1)$

- Retrieve the matching S records from data pages pointed to by the matching index entries
- Output all of them
- For every R.A value, max cost of accessing matching S tuples $=3$ (accessing leaves) + 1 (accessing data page)
- Total cost of index-nested-loop-join $=B(R)+|R|(3+1)=5+5 * 4=25$

Zig-zag join using ordered indexes

$R \bowtie_{R . A=S . B} S$

- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
- Possibly skipping many keys that don't match

Summary of techniques

- Scan
- Selection, duplicate-preserving projection, nested-loop join
- Sort
- External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash
- Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
- Selection, index nested-loop join, zig-zag join

