Balanced Search Trees

- Binary search trees keep keys ordered, with efficient lookup
 - Insert, Delete, Find, all are $O(\log n)$ in average case
 - Worst case is bad
 - Compared to hashing? Advantages?

- Balanced trees are guaranteed $O(\log n)$ in the worst case
 - Fundamental operation is a rotation: keep tree roughly balanced
 - AVL tree was the first one, still studied since simple conceptually
 - Red-Black tree uses rotations, harder to code, better in practice
 - B-trees are used when data is stored on disk rather than in memory
Rotations and balanced trees

- **Height-balanced trees**
 - For every node, left and right subtree heights differ by at most 1
 - After insertion/deletion need to rebalance
 - Every operation leaves tree in a balanced state: *invariant property* of tree

- **Find deepest node that’s unbalanced**
 - On path from root to insert/deleted node
 - Rebalance at this unbalanced point only

Are these trees height-balanced?
Rotation to rebalance

- When a node N is unbalanced
 height differs by 2 (must be more than one)

 ➤ Change N→left→left
 • doLeft
 ➤ Change N→left→right
 • doLeftRight
 ➤ Change N→right→left
 • doRightLeft
 ➤ Change N→right→right
 • doRight

- First/last cases are symmetric
- Middle cases require two rotation
 ➤ First of the two puts tree into doLeft or doRight

Tree * doLeft(Tree * root)
{
 Tree * newRoot = root→left;
 root→left = newRoot→right;
 newRoot→right = root;
 return newRoot;
}
Rotation to rebalance

- Suppose we add a new node in right subtree of left child of root
 - Single rotation can’t fix
 - Need to rotate twice
- First stage is shown at bottom
 - Rotate blue node right
 - This is left child of unbalanced

```c
Tree * doRight(Tree * root) {
    Tree * newRoot = root->right;
    root->right = newRoot->left;
    newRoot->left = root;
    return newRoot;
}
```
Double rotation complete

- Calculate where to rotate and what case, do the rotations

Tree * doRight(Tree * root)
{
 Tree * newRoot = root->right;
 root->right = newRoot->left;
 newRoot->left = root;
 return newRoot;
}

Tree * doLeft(Tree * root)
{
 Tree * newRoot = root->left;
 root->left = newRoot->right;
 newRoot->right = root;
 return newRoot;
}
Other trees

- **Red-black tree uses same rotations, but can rebalance in one pass, contrast to AVL tree**
 - In AVL case, insert, calculate balance factors, rebalance
 - In Red-black tree can rebalance on the way down, code is more complex, but doable

- **Red-black trees used in practice, efficient, guaranteed log n**
 - STL in C++ uses red-black tree for map and set classes
 - Standard `java.util.TreeMap/TreeSet` use red-black

- **B-trees, 2-3 trees, 2-3-4 trees (all variants of the same thing)**
 - Data stored on disk, need higher branching factor than binary search tree
 - $O(\log n)$, but much faster in practice
Trie: efficient search of words/suffixes

- A trie (from retrieval, but pronounced “try”) supports
 - Insertion: a word into the trie (delete and look up)
 - These operations are $O(\text{size of string})$ regardless of how many strings are stored in the trie!

- In some ways a trie is like a 128 (or 26 or alphabet-size) tree, one branch/edge for each character/letter
 - Node stores branches to other nodes
 - Node stores whether it ends the string from root to it

- Extremely useful in DNA/string processing
 - monkeys and typewriter simulation which is similar to some methods used in Natural Language understanding
Trie picture and code (see trie.cpp)

- To add string
 - Start at root, for each char create node as needed, go down tree, mark last node

- To find string
 - Start at root, follow links
 - If Null/0 not contained
 - Check word flag in node

- To print all nodes
 - Visit every node, build string as nodes traversed

- What about union and intersection?
 - Indicates word ends here