Searching, Maps, Tables

- Searching is a fundamentally important operation
 - We want to do these operations quickly
 - Consider searching using google.com, altavista.com, etc.
 - In general we want to search in a collection for a key

- We've seen searching in context of the MultiSet class
 - Tree implementation was quick
 - Table implementation wasn't bad, how to make it better?

- If we compare keys, we cannot do better than log n to search n elements
 - Lower bound is \(\Omega(\log n) \), provable
 - Hashing is \(O(1) \) on average, not a contradiction, why?

From Google to Maps

- If we wanted to write a search engine we'd need to access lots of pages and keep lots of data
 - Given a word, on what pages does it appear?
 - This is a map of words->web pages

- In general a map associates a key with a value
 - Look up the key in the map, get the value
 - Google: key is word/words, value is list of web pages
 - Multiset: key is string, value is # occurrences of string

Interface issues

- Lookup a key, return boolean: in map or value: associated with the key (what if key not in map?)
- Insert a key/value pair into the map

Interface at work: tmapcounter.cpp

- Key is a string, Value is # occurrences (like multiset)
 - Interface in code below shows how tmap class works

while (input >> word) {
 if (map->contains(word)) {
 map->get(word) += 1;
 } else {
 map->insert(word,1);
 }
}

- What clues are there for prototype of map.get and map.contains?
 - Reference is returned by get, not a copy, why?
 - Parameters to contains, get, insert are same type, what?

Accessing values in a map

- We can apply a function object to every element in a map
 - Similar to MultiSet
 - Simple to implement, relatively easy to use
 - Limited: must visit every map element (can’t stop early)

- Alternative: use an iterator (see tmapcounter.cpp)
 - Iterator has access to “guts” of a map, iterates over it
 - Standard interface of Init, HasMore, Next, Current
 - Can have several iterators at once, can stop early

```
Iterator * it = map->makeIterator();
for(it->Init(); it->HasMore(); it->Next()) {
  cout << it->Current().second << "\t";
  cout << it->Current().first << endl;
}
```
Other map examples

- Anamap.cpp, alternative program for finding anagrams
 - Maps Anaword: key to tvector<Anaword>: value
 - Look up Anaword, associate all equal Anawords with first one stored in map
 - To print, loop over all keys, grab vector, print if ???

- Parsing arithmetic expressions
 - Inheritance hierarchy and somewhat complex code
 - Map string/variable name: key to Expression *: value
 - Map x -> y + 3, what’s value of x when y = 7?
 - What happens if we map x -> y and y -> x?

From interface to implementation

- First the name: STL uses map, Java uses map, we’ll use map
 - Other books/courses use table, dictionary, symbol table
 - We’ve seen part of the map interface in tmapcounter.cpp
 - What other functions might be useful?
 - What’s actually stored internally in a map?

- The class tmap is a templated, abstract base class
 - Advantage of templated class (e.g., tvector, tstack, tqueue)
 - Base class permits different implementations
 - UVmap, BSTVap, HMap (stores just string->value)
 - Internally combine key/value into a pair
 - <pair.h> is part of STL, standard template library
 - Struct with two fields: first and second

Some tmap details (not essential)

- As tmap is used it’s templated with two parameters
 - tvector, tstack, tqueue, etc., have one template parameter
 - Templated classes aren’t hard to use, but can be hard to develop and debug
 - Errors with basic_string<…>
 - Develop without templates, then change to templates

- A templated class is a generic class, can store many kinds of object, but some constraints on the object
 - tvector, object must have default constructor and must be assignable, e.g., a = b;
 - BSTMap: keys must be comparable using < and =

Using templated classes

- Client code includes (typically) only .h file
 - Where is the .cpp file, why not access via #include?
 - Difference between compilation and linking
 - Is foo.h included in foo.cpp? Why?

- Template .cpp file is NOT code, it’s a code generator/template
 - When template is instantiated by client, code is generated
 - To instantiate, need access to template source
 - Templated foo.h typically has #include “foo.cpp”
 - Why is this better in foo.h than in client program?

- If you don’t call a templated function it’s not generated
 - Template instantiation creates code, but not every member function (not created if not called)
Log (google) is a big number

- Comparison based searches are too slow for lots of data
 ➢ How many comparisons needed for a billion elements?
 ➢ What if one billion web-pages indexed?

- Hashing is a search method that has average case O(1) search
 ➢ Worst case is very bad, but in practice hashing is good
 ➢ Associate a number with every key, use the number to store the key
 • Like catalog in library, given book title, find the book
- A hash function generates the number from the key
 ➢ Goal: Efficient to calculate
 ➢ Goal: Distributes keys evenly in hash table

Hashing details

- There will be collisions, two keys will hash to the same value
 ➢ We must handle collisions, still have efficient search
 ➢ What about birthday “paradox”: using birthday as hash function, will there be collisions in a room of 25 people?
- Several ways to handle collisions, in general array/vector used
 ➢ Linear probing, look in next spot if not found
 • Hash to index h, try \(h+1, h+2, \ldots \), wrap at end
 ➢ Quadratic probing
 • Has to index h, try \(h+1^2, h+2^2, h+3^2, \ldots \), wrap at end
 • Fewer clustering problems
 ➢ Double hashing
 • Hash to index h, with another hash function to j
 • Try \(h, h+j, h+2j, \ldots \)

Chaining with hashing

- With n buckets each bucket stores linked list
 ➢ Compute hash value h, look up key in linked list table[h]
 ➢ Hopefully linked lists are short, searching is fast
 ➢ Unsuccessful searches often faster than successful
 • Empty linked lists searched more quickly than non-empty
 ➢ Potential problems?

- Hash table details
 ➢ Size of hash table should be a prime number
 ➢ Keep load factor small: number of keys/size of table
 ➢ On average, with reasonable load factor, search is O(1)
 ➢ What if load factor gets too high? Rehash or other method

Hashing problems

- Linear probing, hash(x) = x, \(\text{mod tablesize} \)
 ➢ Insert 24, 12, 45, 14, delete 24, insert 23

- Same numbers, use quadratic probing (clustering better?)

- What about chaining, what happens?
What about hash functions

- Hashing often done on strings, consider two alternatives

```cpp
unsigned hash(const string& s)
{
    unsigned int k, total = 0;
    for(k=0; k < s.length(); k++)
    {
        total += s[k];
    }
    return total;
}
```

- What about total += k*s[k], why might this be better?
 - Other functions used, always mod result by table size

- What about hashing other objects?
 - Need conversion of key to index, not always simple
 - HMap (subclass of tmap) maps string->values
 - Why not any key type (only strings)?

Why use inheritance?

- We want to program to an interface (an abstraction, a concept)
 - The interface may be concretely implemented in different ways, consider stream hierarchy
    ```cpp
donode
void readStuff(istream& input){…}

ifstream input("data.txt");
readStuff(input);
readStuff(cin);
```

- What about new kinds of streams, ok to use?

- Open/closed principle of code development
 - Code should be open to extension, closed to modification
 - Why is this (usually) a good idea?

Two examples

- Consider the expression example (expression.h/.cpp)
 - What do we need to do to add a Multiplication class?
 - What code must be modified vs. extended?

- Consider the tags assignment
 - How do we print/access the text of a web page, e.g., suppose we want to implement a search engine?
 - Should we ignore tags? All tags?
 - How could we access just the links on a web page?
 - The WebParser class has hook methods, also called the template pattern
 - Nomenclature confusing? Not a C++ template.

Tags and the class WebParser

- The base class has a process() method to access a web page
 - Client subclasses implement some of
 - processTag(...) called for each tag on a web page
 - processText(...) called for each non-tag/non-comment word
 - processChar(...) called for every character
 - These are the hook methods (aka template pattern)
 - How can we process a file rather than a web page?

- We inherit some behavior from parent class, don’t modify it, but extend the class by implementing new behavior
 - Good example of open/closed principle