Satisfiability

Michail G. Lagoudakis
Department of Computer Science
Duke University
Durham, NC 27708

Disjunctive Normal Form (DNF)

\[\text{Example (3-CNF): } (x_1 + x_2 + x_3)(x_2 + x_4)(x_1 + x_3) \]

Boolean Formula:

- \(x \) and \(\neg x \)
- Disjunction (OR): \((l_1 + l_2) \)
- Conjunction (AND): \((l_1 \land l_2) \)
- De Morgan Laws: \((l_1 + l_2) = (l_1 \land l_2) \)
- Boolean Formula: \(xy + 2yz + (x + y)z \)

Normal Forms

Conjunctive Normal Form (CNF)

- A conjunction of disjunctions (clausal form)
- Example: \((x_1 + x_2 + x_3)(x_2 + x_4)(x_1 + x_3) \)

\(k \)-CNF

- A CNF formula where each clause contains exactly \(k \) literals.
- Example (3-CNF): \((x_1 + x_2 + x_3)(x_2 + x_3 + x_4)(x_1 + x_2 + x_3) \)

Disjunctive Normal Form (DNF)

- A disjunction of conjunctions
- Example: \(x_1x_2x_3 + x_2x_4 + x_1x_5 + x_1x_2x_3x_5 \)

Historical Reasons

- The first NP-COMPLETE problem
- Important research challenge

Practical Reasons

- Many applications
- Many hard problems can be turned into SAT
- SAT solvers become better and better

SAT and Variations

Given a CNF boolean formula over \(n \) variables:

- Decision SAT: Is there a satisfying assignment?
- SAT: Find a satisfying assignment, if such an assignment exists.
- \#SAT: Find the number of satisfying assignments.
- MAJ-SAT: Is the majority of the assignments satisfying?
- MAX-SAT: Find an assignment that maximizes the number of satisfied clauses.

These are all HARD problems!
SAT as CSP

SAT is a Constraint Satisfaction Problem.

- **Variables**: Boolean variables in the formula
- **Domains**: Each variable can take values from \(\{0, 1\} \)
- **Constraints**: Each clause of size \(k \) is a \(k \)-ary constraint
 \[(x_2 + x_3 + x_4) \]
 \(x_2, x_3, \) and \(x_4 \) cannot be simultaneously \(x_2 = 1, x_3 = 0, \) and \(x_4 = 0 \)
- **Solution**: An assignment that satisfies all constraints (clauses).

The DPLL procedure

DPLL stands for Davis-Putnam-Logemann-Loveland (1962)

SAT as a Search Problem

- **State Space**: Space of all partial assignments.
- **Initial State**: All variables unassigned.
- **Actions**: Assign a variable to TRUE or FALSE.
- **Goal State**: A satisfying assignment (partial or complete).

Some Facts

- Depth-first search with branching factor 2.
- Partial assignments that cause contradiction can be pruned.
- Interested in the goal only, not in the path to the goal.

DPLL: Branching

Branching or Splitting

- If there are not unit clauses or pure variables, select an unassigned variable and try in turn the two possible assignments.
- Create a reduced formula in each case and continue recursively.

Example

- \((x_1 + x_2 + x_3)(\overline{x}_1 + x_5)(\overline{x}_2 + x_4)x_1 + x_3 + x_5 \)
- Assume that \(x_1 \) is selected.
- \(x_1 = 1 \) gives \((\overline{x}_2 + x_4)\)
- \(x_1 = 0 \) gives \((x_2 + x_3)(x_2 + x_4)\)

DPLL: Branching Heuristics

- Selecting a free literal is a non-deterministic step.
- Several branching heuristics have been developed:
 - Select the literal with the maximum number of occurrences.
 - Select the literal with maximum occurrences in minimum size clauses.
 - Select the literal that will cause the most unit propagations.
- The branching choices can have a tremendous impact on the size of the search tree.
- Example: 3CNF(100,430): 101, 961, 963, 2493, 3638, 41248, 169048.
 - Making “optimal” branching choices is NP-HARD (not surprising!).
 - Remember the cutsets for CSPs?

DPLL: Unit Propagation and Purification

Unit Propagation

- If there is a unit clause, there is only one promising assignment to the corresponding variable (unary constraint).
- Example: \((x_1 + x_2 + x_3)(\overline{x}_1 + x_3)(\overline{x}_2 + x_4)\)
- Make that assignment \((x_2 = 0)\) and eliminate the variable \((x_2)\).

Purification

- A pure variable appears purely in positive \((x_i)\) or negative \((\overline{x}_i)\) form.
- Assign \(x_i = 1 \) in the positive case and \(x_i = 0 \) in the negative case.
- Example: \(x_2 \) and \(x_3 \) are pure. Assign \(x_3 = 1 \) and \(x_5 = 0 \).

DPLL: Pseudocode

DPLL(**F**):

- if \(F \) contains an empty clause:
 - return “unsatisfiable”
- if \(F \) is empty:
 - output current assignment
 - return “satisfiable”
- Unit Propagation
 - if \(F \) contains a unit clause \([l]\)
 - Create \(F' \) from \(F\) by eliminating all clauses that contain \(l \) and all appearances of \(l \)
 - return DPLL(**F'**)"
 - Purification
 - if \(F \) contains a pure literal \(l \)
 - return DPLL(**F \cup \{l\}**)"
 - Branching
 - if DPLL(**F \cup \{l\}**) is “satisfiable”
 - return “satisfiable”
 - else
 - return DPLL(**F \cup \{\overline{l}\}**)"

Resolution

Resolution Inference Rule

- Given that \((x + y)(y + z)\), infer \((x + z)\).

Variable Elimination

- Given a CNF formula \(F \)
- Find a variable \(x \) that appears in both positive and negative form.
- If there is no such variable, we are done! Why?
- Let \(F^+(x) \subset F \) be the set of clauses of \(F \) that contain \(x \).
- Let \(F^-(x) \subset F \) be the set of clauses of \(F \) that contain \(\overline{x} \).
- Create \(RES(x) = \{res_{e_1}(c_1, c_2) \mid e_1 \in F^+(x), e_2 \in F^-(x)\} \).
- \(F \) is equivalent to \((F - F^+(x) - F^-(x)) \cup RES(x)\)
Variable Elimination Example

- $F = (x_1 + x_2 + x_3)(x_2 + x_4)(x_1 + x_2)(x_2 + x_3 + x_4)(x_1 + x_2 + x_3)$
- Select x_1
- $F^+ = (x_1 + x_2 + x_3)$
- $F^- = (x_2 + x_3)(x_1 + x_2 + x_3)$
- $F_{n^+} = (x_2 + x_3)$
- $F_{n^-} = (x_2 + x_3)$
- $F = (x_2 + x_3)(x_2 + x_3 + x_4)(x_2 + x_3 + x_4)(x_1 + x_2 + x_3)$
- $F = (x_2 + x_3)(x_2 + x_3 + x_4)(x_2 + x_3 + x_4)$
- Select ...

Variable Ordering in DP

- Selecting a free variable to resolve is a non-deterministic step.
- Eliminating one variable can possibly create quadratically many clauses.
- The ordering of variables can have a tremendous impact on the size of the resulting formulas.
- Making “optimal” ordering choices is NP-HARD (not surprising!).
- Remember the elimination ordering in CSPs?

SAT as Local Search

- **State** : Space of all full assignments.
- **Initial State** : A random assignment.
- **Actions** : Flip one variable in the assignment.
- **Goal State** : A satisfying assignment (partial or complete).
- **Score** : The number of satisfied clauses
- **Objective** : Maximize score.

The Davis-Putnam Procedure (1960)

```plaintext
DPP(F)
if (F contains an empty clause) return “unsatisfiable”
else if (F is empty) return “satisfiable”
// Unit Propagation 
if (F contains a unit literal l) Create F’ from F by eliminating all clauses that contain (a and all appearances of l)
return DP(F’)
// Purification
if (F contains a pure literal l) return DP(F \ {l})
// Resolution
*** Select a free variable x ***
F’ = (F \ F(x)) \ F’(x) return DP(F’)
```

Complexity Issues

DPLL

- Linear Space (current partial assignment, active clauses)
- In general, exponential time (binary search tree).
- Worst case is exponential.

DP

- Linear elimination steps (each step eliminates one variable).
- In general, exponential space is needed to store the formula.
- Worst case is exponential.

Preference is given to DPLL for it is easier to implement.

GSAT

Selman, Levesque, and Mitchell (1992)

```plaintext
GSAT(F)
for (ω = 1) to MAXTRIES
Select a complete random assignment A
for (j = 1) to MAXFLIPS
if (A satisfies all clauses in F) return “satisfiable”, A
else
Flip a variable that maximizes the score (score = number of satisfied clauses)
Flip at random if no variable flip increases the score
end
end
```

What does it do?

- Hill Climbing with Random Restarts and Sideway Moves

WALKSAT

Selman, Kautz, and Kohan (1994)

```plaintext
WALKSAT(F)
for (i = 1 to MAXTRIES)
Select a complete random assignment A
for (j = 1) to MAXFLIPS
if (A satisfies all clauses in F) return “satisfiable”, A
else
With probability $p$ // GSAT /*
Flip a variable that maximizes the score (score = number of satisfied clauses)
Flip at random if no variable flip increases the score
With probability $1 - p$ /* Random Walk */
Pick an unsatisfied clause C
Flip a randomly chosen variable in C
end
```

GSAT, WALKSAT, and more

- Surprisingly efficient!
- Major breakthrough in SAT research
- WALKSAT rendered the DIMACS benchmark library obsolete!
- Promising alternative to systematic methods.
- Cannot show unsatisfiability.
- Other incomplete methods:
 - Neural Networks
 - Genetic Algorithms
 - Simulated Annealing
Randomly Generated k-CNF

Combinatorics

- Fix n (variables), m (clauses), k (clause length).
- Generate m clauses by choosing k variables at random.
- In each clause, negate the resulting variables randomly (flip an unbiased coin).
- Is it possible to express the number of possible formulas as a function of n, m, k?

\[
\binom{n}{k} \times 2^k\]

It may generate some duplicate clauses.

Properties

- F is a randomly generated k-CNF.
- What is the probability that F is satisfiable/unsatisfiable?
- It depends on the ratio m/n:
 - $m/n < 4.2$, F is underconstrained; most likely satisfiable.
 - $m/n > 4.2$, F is overconstrained; most likely unsatisfiable.
 - $m/n \approx 4.2$, F is critically constrained; need to search.
- Easy-Hard-Easy distribution of instances.
- Phase transition phenomena at $m/n \approx 4.25$.
- The transition sharpens as n increases.

Random k-CNF Distribution

Henry Kautz and Bart Selman (1996)

SATPLAN

Idea

- Transform a planning problem into a satisfiability problem.
- Use a general-purpose SAT solver to find a satisfying assignment.
- Translate the satisfying assignment back to a plan for the original problem.

Results

- Efficient.
- Key issue: SAT encoding of the planning problem.
- Huge SAT instances (around 10,000 variables)

BLACKBOX

Henry Kautz and Bart Selman (1999)

Idea

- BLACKBOX is a combination of SATPLAN and GRAPHPLAN.
- Transform a planning problem into a plan graph of length k.
- Apply GRAPHPLAN simplifications.
- Convert the plan graph to a CNF formula.
- Apply SATPLAN simplifications.
- Solve the resulting CNF using any SAT solver.
- If a satisfying assignment is found, convert to a plan.
- Otherwise, increase k and repeat.

In Conclusion

- SAT and its variations are HARD problems.
- There is a lot of active research in satisfiability.
- There are many practical applications of SAT.
- SAT solvers improve consistently.
- SAT is still a BIG research challenge.