
CPS 100 2.1

Inheritance and the Yahtzee program
In version of Yahtzee given previously, scorecard.h held
information about every score-card entry, e.g., fullhouse, small
straight, etc.

Changing the .h requires recompiling all files that include
it, either directly or indirectly
Consequences of large-scale recompiling? What about
building large programs (word, XP, etc.)

Changes made in several places in scorecard.cpp as well
String for description, code for scoring, order of entries in
.h file
Code in different places, related, must be synchronized

Inheritance is an answer to problem of avoiding recompiling,
facilitating testing, keeping related code together

CPS 100 2.2

Benefits of inheritance, interfaces
Suppose you learn about a new class WebStream that
conforms to the input stream interface (cin, ifstream, …)

Can you write code to read words from a web page?
Can you write code to read lines from a web page? Chars?

Can you use existing word counting code to read from a web
page instead of from a file, e.g., in readwords.cpp?

void readWords(istream& input) {…}

Why can we pass cin, ifstream, WebStream, etc.?
Inheritance, combined with late-binding
What type of variable according to compiler? Runtime?

CPS 100 2.3

Why inheritance?
Add new shapes easily without
changing much code

Shape * sp = new Circle();
Shape * sp2 = new Square();

abstract base class:
interface or abstraction
pure virtual function

concrete subclass
implementation
provide a version of all
pure functions

“is-a” view of inheritance
Substitutable for, usable in
all cases as-a

shape

mammal

ScoreEntry
FullHouse, LargeStraight

User’s eye view: think and
program with abstractions, realize
different, but conforming
implementations,

don’t commit to something
concrete until as late as possible

CPS 100 2.4

Code snippets from old version
Old version of scoreentry.h

class ScoreEntry
{

public:
enum Kind{
ones, twos, threes, fours, fives, sixes, kind3, kind4
fullhouse, smallstraight,largestraight,yahtzee, chance
};
// …

Old version of scorecard.cpp

ScoreCard::ScoreCard()
{

myCount = ScoreEntry::numEntries();
for(int k=0; k < myCount; k++) {

myEntries.push_back(
ScoreEntry(static_cast<ScoreEntry::Kind>(k)));

}
}

CPS 100 2.5

Yahtzee specifics
In new version each score-card entry (almost) is a class

Similar entries might be one class, e.g., ones, twos, … sixes
See aboveline.h, what about three/four/five of a kind?

In ScoreCard how do create all the entries on a card?
Allocate an instance of each entry using new
Creates object pointed to by a ScoreEntry pointer
• How can ScoreEntry pointer point at SmallStraight?
• How can ScoreEntry pointer point at FullHouse? Nothing?

In creating a new score-card entry, do we modify existing
header files? Existing .cpp files? Benefits?

What must be recompiled when adding small straight?

CPS 100 2.6

Guidelines for using inheritance
Create a base/super/parent class that specifies the behavior
that will be implemented in subclasses

Most/All functions in base class may be virtual
• Often pure virtual (= 0 syntax), subclasses must implement

Subclasses do not need to specify virtual, but good idea
• May subclass further, show programmer what’s going on

Subclasses specify inheritance using : public Base
• C++ has other kinds of inheritance, stay away from these

Must have virtual destructor in base class

Inheritance models “is-a” relationship, a subclass is-a parent-
class, can be used-as-a, is substitutable-for

Standard examples include animals and shapes

CPS 100 2.7

Inheritance guidelines/examples
Virtual function binding is determined at run-time

Non-virtual function binding (which one is called)
determined at compile time
Need compile-time, or late, or polymorphic binding
Small overhead for using virtual functions in terms of
speed, design flexibility replaces need for speed
• Contrast Java, all functions “virtual” by default

In a base class, make all functions virtual
Allow design flexibility, if you need speed you’re wrong,
or do it later

In C++, inheritance works only through pointer or reference
If a copy is made, all bets are off, need the “real” object

CPS 100 2.8

See students.cpp, school.cpp
Base class student doesn’t have all functions virtual

What happens if subclass uses new name() function?
• name() bound at compile time, no change observed

How do subclass objects call parent class code?
Use class::function syntax, must know name of parent class

Why is data protected rather than private?
Must be accessed directly in subclasses, why?
Not ideal, try to avoid state in base/parent class: trouble
• What if derived class doesn’t need data?

CPS 100 2.9

Inheritance (language independent)
First view: exploit common interfaces in programming

Streams in C++, iterators in Tapestry classes
• Iterators in STL/C++ share interface by convention/templates

Implementation varies while interface stays the same

Second view: share code, factor code into parent class
Code in parent class shared by subclasses
Subclasses can override inherited method
• Can subclasses override and call?

Polymorphism/late(runtime) binding (compare: static)
Actual function called determined when program runs, not
when program is compiled

CPS 100 2.10

Inheritance guidelines in C++
Inherit from Abstract Base Classes (ABC)

one pure virtual function needed (=0)
• Subclasses must implement, or they’re abstract too

must have virtual destructor implemented
can have pure virtual destructor implemented, but not
normally needed

Avoid protected data, but sometimes this isn’t possible
data is private, subclasses have it, can’t access it
keep protected data to a minimum

Single inheritance, assume most functions are virtual
multiple inheritance ok when using ABC, problem with
data in super classes
virtual: some overhead, but open/closed principle intact

CPS 100 2.11

Inheritance Heuristics
A base/parent class is an interface

Subclasses implement the interface
• Behavior changes in subclasses, but there’s commonality

The base/parent class can supply some default behavior
• Derived classes can use, override, both

The base/parent class can have state
• Protected: inherited and directly accessible
• Private: inherited but not accessible directly

Abstract base classes are a good thing
Push common behavior as high up as possible in an
inheritance hierarchy
If the subclasses aren’t used polymorphically (e.g., through a
pointer to the base class) then the inheritance hierarchy is
probably flawed

CPS 100 2.12

Inheritance Heuristics in C++
One pure virtual (aka abstract) function makes a class abstract

Cannot be instantiated, but can be constructed (why?)
Default in C++ is non-virtual or monomorphic
• Unreasonable emphasis on efficiency, sacrifices generality
• If you think subclassing will occur, all methods are virtual

Must have virtual destructor, the base class destructor (and
constructor) will be called

We use public inheritance, models is-a relationship
Private inheritance means is-implemented-in-terms-of
• Implementation technique, not design technique
• Derived class methods call base-class methods, but no

“usable-as-a” via polymorphism

