Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines.

1. Given Turing Machines M_1 and M_2

 Notation for

 - Run M_1
 - Run M_2

 2. Given Turing Machines M_1 and M_2

 Notation for

 - Run M_1
 - If x is current symbol
 - then Run M_2
3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

- z is any symbol in Γ
- x is a specific symbol from Γ

1. s - start
2. R - move right
3. L - move left
4. x - write x (and don’t move)
5. R_a - move right until you see an a

6. L_a - move left until you see an a

7. $R_{\sim a}$ - move right until you see anything that is not an a

8. $L_{\sim a}$ - move left until you see anything that is not an a

9. h - halt in a final state

10. $\begin{align*}
 a & \xrightarrow{b} w
\end{align*}$

 If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?
Example

Assume input string \(w \in \Sigma^+ \), \(\Sigma = \{a, b\} \), \(|w| > 0\)

For each \(a \) in the string, append a \(b \) to the end of the string.

input: \(abbabb \), output: \(abbabbb \)

The tape head should finish pointing at the leftmost symbol of \(w \).

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function \(f: D \rightarrow R \) is a TM \(M \), which given input \(d \in D \), halts with answer \(f(d) \in R \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{align*}
\text{start with:} & \quad 111+1111 \\
\uparrow & \\
\text{end with:} & \quad 111111 \\
\uparrow &
\end{align*}
\]
Example: Copy a String, \(f(w) = w0w \), \(w \in \Sigma^* \), \(\Sigma = \{a, b, c\} \)

Denoted by \(C \)

start with: \(\text{abac} \)

\[\uparrow \]

end with: \(\text{abac0abac} \)

\[\uparrow \]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

```
start with: aaBbabca
     ↑
end with:   aaBBbaca
     ↑
```

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position

```
s R \overset{\mathrm{a,b,c,B}}{\longrightarrow} v \quad 0
     ↓
L B L \overset{\mathrm{a,b,c}}{\longrightarrow} w \to B R w L
     ↓
   B
   ↓
R 0 v L h
```
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: $babcaBba$

\uparrow

end with: $bacaBBba$

\uparrow

(similar to S_R)

\[
\begin{align*}
 &s \quad L \xrightarrow{a,b,c,B} \quad v \rightarrow \quad 0 \\
 &R \quad B \quad R \xrightarrow{a,b,c} \quad w \rightarrow \quad B \quad L \quad w \quad R \\
 &L \quad 0 \quad v \quad R \quad h
\end{align*}
\]
Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, \(f(x \cdot y) = x \cdot y \), \(x \) and \(y \) unary numbers. Assume \(x, y > 0 \).

start with: \[1111 \star 11 \]

\[\uparrow \]

end with: \[11111111 \]

\[\uparrow \]