Section: Turing Machines - Building Blocks

1. Given Turing Machines M1 and M2

Notation for

- Run M1
- Run M2

\[
\begin{align*}
&\text{M1} \\
&S \quad H \\
\rightarrow
\end{align*}
\]

\[
\begin{align*}
&\text{M2} \\
&S' \quad H' \\
\rightarrow
\end{align*}
\]

\[
\begin{align*}
&\rightarrow \text{M1} \rightarrow \text{M2}
\end{align*}
\]

\[
\begin{align*}
&S \quad H \\
&z;z,R \\
&S\end{align*}
\]

\[
\begin{align*}
&z;z,L \\
&H' \quad H' \\
\end{align*}
\]

\[
\begin{align*}
&z \text{ represents any symbol in }
\end{align*}
\]
2. Given Turing Machines M1 and M2

M1

M2

\[\rightarrow M1 \xrightarrow{x} M2 \]

\[\rightarrow S \quad \overset{x;\text{x,R}}{\longrightarrow} \quad H \quad \overset{z;\text{z,L}}{\longrightarrow} \quad S' \quad \overset{z}{\longrightarrow} \quad H' \]

z represents any symbol in
x is an element of
3. Given Turing Machines M_1, M_2, and M_3

x is an element of Γ
y is any element except x from Γ
z is any element from Γ
More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

- z is any symbol in Γ
- x is a specific symbol from Γ

1. s - start
2. R - move right
3. L - move left
4. x - write x (and don’t move)
5. R_a - move right until you see an a
6. L_a - move left until you see an a

7. $R_{\neg a}$ - move right until you see anything that is not an a

8. $L_{\neg a}$ - move left until you see anything that is not an a

9. h - halt in a final state
10. $\begin{array}{c} a, b \end{array} \Rightarrow \begin{array}{c} w \end{array}$

If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb
input: ba, output: ba
What is the running time?
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$, $|w| > 0$

For each a in the string, append a b to the end of the string.

input: $abbabb$, output: $abbabbbb$

The tape head should finish pointing at the leftmost symbol of w.
Turing’s Thesis: Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $f:D \rightarrow \mathbb{R}$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in \mathbb{R}$.

Example: $f(x + y) = x + y$, x and y unary numbers.

```
start with: 111+1111
↑
end with: 1111111
↑
```
Example: Copy a String, \(f(w) = w0w, \)
\(w \in \Sigma^*, \Sigma = \{a, b, c\} \)

Denoted by \(C \)

start with: \(abac \)

\[\uparrow \]

end with: \(abac0abac \)

\[\uparrow \]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

start with: aaBbabc

end with: aaBBbaca
Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: \hspace{1cm} babcaBba

\[\uparrow\]

end with: \hspace{1cm} bacaBBBba

\[\uparrow\]

(similar to S_R)
Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, \(f(x*y) = x*y \), \(x \) and \(y \) unary numbers. Assume \(x,y > 0 \).

\[
\begin{align*}
\text{start with:} & \quad 1111 \times 11 \\
\uparrow & \\
\text{end with:} & \quad 11111111 \\
\uparrow &
\end{align*}
\]