Section: LR Parsing

LR PARSING

LR(k) Parser

- bottom-up parser
- shift-reduce parser
- L means: reads input left to right
- R means: produces a rightmost derivation
- \bullet k number of lookahead symbols

LR parsing process

- convert CFG to PDA
- Use the PDA and lookahead symbols

Convert CFG to PDA The constructed NPDA:

- three states: s, q, f start in state s, assume z on stack
- all rewrite rules in state s, backwards rules pop rhs, then push lhs $(s,lhs) \in \delta(s,\lambda,rhs)$ This is called a reduce operation.
- additional rules in s to recognize terminals

For each $x \in \Sigma$, $g \in \Gamma$, $(s,xg) \in \delta(s,x,g)$

This is called a shift operation.

- pop S from stack and move into state q
- pop z from stack, move into f, accept.

Example: Construct a PDA.

 $\mathbf{S} \to \mathbf{aSb}$

 $\mathbf{S} o \mathbf{b}$

LR Parsing Actions

1. shift

transfer the lookahead to the stack

2. reduce

For $X \to w$, replace w by X on the stack

3. accept

input string is in language

4. error

input string is not in language

LR(1) Parse Table

• Columns:

terminals, \$ and variables

• Rows:

state numbers: represent patterns in a derivation

LR(1) Parse Table Example

$$1) \,\, S \rightarrow aSb$$

2)
$$S \rightarrow b$$

	a	b	\$	S
0	s2	s3		1
1			acc	
2	s2	s3		4
3		r2	$\mathbf{r2}$	
4		s5		
5		r1	r1	

Definition of entries:

- \bullet sN shift terminal and move to state N
- N move to state N
- \bullet rN reduce by rule number N
- acc accept
- blank error

```
state = 0
push(state)
read(symbol)
entry = T[state, symbol]
while entry.action \neq accept do
   if entry.action == shift then
      push(symbol)
      state = entry.state
      push(state)
      read(symbol)
   else if entry.action == reduce then
      do 2*size_rhs times {pop()}
      state := top-of-stack()
      push(entry.rule.lhs)
      state = T[state, entry.rule.lhs]
      push(state)
   else if entry.action == blank then
      error
   entry = T[state, symbol]
end while
if symbol \neq $ then error
```

Example:

Trace aabbb

						5			
						\mathbf{b}			
				3	4	4		5	
				b	\mathbf{S}	${f S}$		\mathbf{b}	
			2	2	2	2	4	4	
			a	a	a	\mathbf{a}	\mathbf{S}	\mathbf{S}	
		2	2	2	2	2	2	2	1
		a	a	a	a	\mathbf{a}	a	\mathbf{a}	\mathbf{S}
	0	0	0	0	0	0	0	0	0
S:	<u>Z</u>	<u>Z</u>	<u>Z</u>	<u>Z</u>	<u>Z</u>	$\underline{\mathbf{Z}}$	<u>Z</u>	<u>Z</u>	<u>Z</u>
\mathbf{L} :	a	a	b	b	b	b	b	\$	\$
A:									

To construct the LR(1) parse table:

- Construct a dfa to model the top of the stack
- Using the dfa, construct an LR(1) parse table

To Construct the DFA

- ullet Add S' o S
- ullet place a marker "_" on the rhs $S' o _S$
- ullet Compute closure(S' ightarrow $_$ S). Def. of closure:
 - 1. closure(A \rightarrow v_xy) = {A \rightarrow v_xy} if x is a terminal.
 - 2. closure(A \rightarrow v_xy) = {A \rightarrow v_xy} \cup (closure(x \rightarrow _w) for all w if x is a variable.

- \bullet The closure(S' \rightarrow _S) is state 0 and "unprocessed".
- Repeat until all states have been processed
 - -unproc = any unprocessed state
 - -For each x that appears in $A\rightarrow u_xv$ do
 - * Add a transition labeled "x" from state "unproc" to a new state with production $A\rightarrow ux_v$
 - * The set of productions for the new state are: $closure(A\rightarrow ux_v)$
 - * If the new state is identical to another state, combine the states Otherwise, mark the new state as "unprocessed"
- Identify final states.

Example: Construct DFA

- (0) S' \rightarrow S
- $egin{array}{ll} egin{pmatrix} oxed{(1)} & \mathbf{S}
 ightarrow \mathbf{aSb} \ oxed{(2)} & \mathbf{S}
 ightarrow \mathbf{b} \end{array}$

Backtracking through the DFA Consider aabbb

- Start in state 0.
- Shift "a" and move to state 2.
- Shift "a" and move to state 2.
- Shift "b" and move to state 3. Reduce by " $S \rightarrow b$ " Pop "b" and Backtrack to state 2. Shift "S" and move to state 4.
- ullet Shift "b" and move to state 5. Reduce by "S \to aSb" Pop "aSb" and Backtrack to state 2.

Shift "S" and move to state 4.

• Shift "b" and move to state 5. Reduce by "S \rightarrow aSb" Pop "aSb" and Backtrack to state 0.

Shift "S" and move to state 1.

• Accept. aabbb is in the language.

To construct LR(1) table from diagram:

- 1. If there is an arc from state1 to state2
 - (a) arc labeled x is terminal or T[state1, x] = sh state2
 - (b) arc labeled X is nonterminal T[state1, X] = state2
- 2. If state1 is a final state with $X \to w_-$ For all a in FOLLOW(X), $T[\text{state1,a}] = \text{reduce by } X \to w$
- 3. If state1 is a final state with $S' \rightarrow S_{-}$ T[state1,\$] = accept
- 4. All other entries are error

Example: LR(1) Parse Table

(0)
$$S' \rightarrow S$$

$$(1) \,\, \mathrm{S} \rightarrow \mathrm{aSb}$$

(2)
$$S \rightarrow b$$

Here is the LR(1) Parse Table with extra information about the stack contents of each state.

Stack	State	Terminals		als	Variables
contents	number	a	b	\$	S
(empty)	0				
	1				
	2				
	3				
	4				
	5				

Actions for entries in LR(1) Parse table T[state,symbol]

Let entry = T[state,symbol].

- If symbol is a terminal or \$
 - If entry is "shift statei"
 push lookahead and statei on the stack
 - -If entry is "reduce by rule $X \rightarrow w$ "
 - pop w and k states (k is the size of w) from the stack.
 - If entry is "accept"Halt. The string is in the language.
 - If entry is "error"
 Halt. The string is not in the language.

• If symbol is nonterminal We have just reduced the rhs of a production $X \to w$ to a symbol. The entry is a state number, call it state i. Push T[state i, X] on the stack.

Constructing Parse Tables for CFG's with λ -rules

 $\mathbf{A} \to \lambda$ written as $\mathbf{A} \to \lambda_{-}$

Example

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{d} \mathbf{X} \ \mathbf{X} &
ightarrow \mathbf{a} \mathbf{X} \ \mathbf{X} &
ightarrow \lambda \end{aligned}$$

Add a new start symbol and number the rules:

- (0) $S' \rightarrow S$
- $(1) \ \ \mathbf{S} \to \mathbf{d}\mathbf{d}\mathbf{X}$
- $(2) \ \ {\rm X} \rightarrow {\rm aX}$
- (3) $\mathbf{X} \rightarrow \lambda$

Construct the DFA:

Construct the LR(1) Parse Table

	a	d	\$ S	\mathbf{X}
0				
1				
2 3				
3				
4				
5				
6				

Possible Conflicts:

1. Shift/Reduce Conflict Example:

$$egin{aligned} \mathbf{A} &
ightarrow \mathbf{ab} \ \mathbf{A} &
ightarrow \mathbf{abcd} \end{aligned}$$

In the DFA:

$$egin{array}{l} \mathbf{A}
ightarrow \mathbf{ab}_- \ \mathbf{A}
ightarrow \mathbf{ab}_- \ \mathbf{cd} \end{array}$$

2. Reduce/Reduce Conflict Example:

$$egin{aligned} \mathbf{A} &
ightarrow \mathbf{ab} \ \mathbf{B} &
ightarrow \mathbf{ab} \end{aligned}$$

In the DFA:

$$egin{array}{l} {f A}
ightarrow {f ab}_- \ {f B}
ightarrow {f ab}_- \end{array}$$

3. Shift/Shift Conflict