NP hardness & CSPs
CPS 170
Ron Parr

NP-hardness
• Many problems in AI are NP-hard (or worse)
• What does this mean?
• These are some of the hardest problems in CS
• Identifying a problem as NP hard means:
 – You probably shouldn’t waste time trying to find a polynomial time solution
 – If you find a polynomial time solution, either
 • You have a bug
 • Find a place on your shelf for your Turing award
• NP hardness is a major triumph (and failure) for computer science theory

What is the class NP?
• A class of decision problems (Yes/No)
• Solutions can be verified in polynomial time
• Examples:
 – TSP (existence):
 ➔
 – Sortedness: [1 2 3 4 5 8 7]

What is NP completeness?
• All NP complete problems can be “reduced” to each other in polynomial time
• What is a reduction?
 – Use one problem to solve another
 – A is reduced to B, if we can use B to solve A:

Why care about NP-completeness?
• Solving any one NP-complete problem gives you the key to all others
• NP-complete problems are, in a sense, equivalent
• Insight into solving any one gives you insight into solving a vast array of problems of extraordinary practical and economic significance

Proving NP Completeness
• Want to prove problem C is NP complete
 – Show that C is in NP
 – Find known NP complete problem reducible to C
• Are TSPs NP-complete?
 • Change into a decision problem
 • Q: Does there exist a solution with cost < k
 • Prove that TSPs are in NP
 • Reduce known NP complete problem to TSPs
The First NP Complete Problem (Cook 1971)
- SAT:
 \[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{23}) \land \ldots\]
- Want to find an assignment to all variables that makes this expression evaluate to true.
- NP-hard for clauses of size 3 or greater
- How would you prove this?

What is NP Hardness?
- NP hardness is weaker than NP completeness
- C is NP hard if an NP complete problem is reducible to it
- NP completeness = NP hardness + NP membership
- Consider the problem #SAT
 - How many satisfying assignments to:
 \[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{23}) \land \ldots\]
 - Is this in NP?
 - Is it NP-hard?

#SAT is NP-hard
- Theorem: #SAT is NP hard
- Proof:
 - Reduce SAT to #SAT

```
SAT instance \rightarrow \text{SAT solver} \rightarrow \text{#SAT solver} \rightarrow x
```

- If \(x > 0 \) return Y
- Else return N

NP-Completeness Summary
- NP-completeness tells us that a problem belongs to class of similar, hard problems.
- What if you find that a problem is NP hard?
 - Look for good approximations
 - Find different measures of complexity
 - Look for tractable subclasses
 - Use heuristics

CSPs
- What is a CSP?
- One view: Search with special goal criteria
- CSP definition (general):
 - Variables \(X_1, \ldots, X_n \)
 - Variable \(X_i \) has domain \(D_i \)
 - Constraints \(C_1, \ldots, C_m \)
 - Solution: Each variable gets a value from its domain such that no constraints violated
- CSP examples...
 - http://www-users.cs.york.ac.uk/~tw/cspilib/

Our Restricted View
- Variables \(X_1, \ldots, X_n \)
- A binary constraint, lists permitted assignments to pairs of variables
- A binary constraint between binary variables is a table of size 4, listing legal assignments for all 4 combinations.
- A k-ary constraint lists legal assignments to k variables at a time.
- How large is a k-ary constraint for binary variables?
CSP Example

Graph coloring:

Problem: Assign Red, Green and Blue so that no 2 adjacent regions have the same color.

Example Contd.

- Variables: \{WA, NT, Q, SA, NSW, V, T\}
- Domains: \{R, G, B\}
- Constraints:
 - For WA – NT: {(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}
 - We have a table for each adjacent pair
 - Are our constraints binary?
 - Can every CSP be viewed as a graph problem?

Constraint Graph

CSPs as Search

Nodes: Partial Assignments
Actions: Make Assignments

NP-Completeness of CSPs

- Are CSPs in NP?
- Are they NP-hard?
- CSPs and graph coloring are equivalent
- Graph coloring is NP-hard
- Use to solve 3SAT
- End of the story or just the beginning?

Issues

- What are good heuristics?
 - Often good to think of this as a local search
 - Focus on choosing actions carefully, instead of pruning nodes carefully
- Can we develop heuristics that apply to the entire class of problems, not just specific instances?
- What’s the best we can hope for?
Constraint Graphs

- Constraint graphs are important because they capture the structural relationships between the variables.
- **IMPORTANT CONCEPT**: Not all instances of a hard problem class are hard
 - Structural features give insight into hardness
 - Group problems within class by structural features
 - New measure of problem complexity

Arc Consistency

- Check all arcs for inconsistencies
- For each value at the start, there must exist a consistent value at the terminus
- Catches many inconsistencies
- Can use to iteratively reduce number of possible assignments to each variable

Generalized Arc Consistency

- k-consistency
 - Consider sets of k variables
 - For each setting of a k-1 subset
 - Must exist a consistent setting for the kth variable
- Check for more distant influences
- Strong k-consistency
 - Strong implies j-k consistency

Facts About Arc Consistency

- What if a graph with n variables is strongly n-consistent?
 - Solution exists!
- What is the worst-case cost of checking strong n-consistency?
 - $O(2^n)$

Linear Constraint Structures

Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are strongly n consistent.

Proof: Induction on n.

I.H.: Arc consistent chains of length 1 are strongly consistent.

I.S.: Extending an i step arc-consistent chain by 1 new arc consistent link produces an i+1 link arc-consistent chain.

Proof of I.S.: Since the last link is arc-consistent, any choice for variable i ensures a consistent choice for i+1. No other variables participate in constraints for i+1.
Properties of Trees

Theorem: Arc consistent constraint trees are strongly n consistent.

Proof: Same as chain case...

Corollary: Hardness of CSPs with constraint trees

Polynomial!

Cool fact: We now have a graph-based test for separating out some of the hard problems from the easy ones.

Cutsets

Suppose removing a single node converts graph to tree. Spawn 3 separate subproblems: SA, SA, SA

General Cutsets

Properties of Cutsets

- Suppose we find a cutset with m variables
- What is the cost of solving the CSP?

\[O(d^m \text{poly}(n - m)) \]

- How hard is it to find the smallest cutset?

NP hard, but fast (decent) poly time approximations and randomized algorithms exist and are under development.

Why Cutsets Are Important

- Cutsets give another structural measure of problem complexity
- Approximate min cutset algorithms give upper bound on run time to solve problem
- Cutsets do not depend upon the content of the constraints, only the structure
- Investment in finding a good cutset can be amortized over several problems with different constraints but same structure

Manipulating Graphs

- Cutsets reduce graphs into a number of smaller problems that we know how to solve in polynomial time.
- Is there a way to work directly with the graph structure?
- Idea: Force graph to be tree-like by eliminating and combining variables
Variable Elimination

Eliminate WA

Domain(NT, SA) = {(blue, green), (blue, red), (green, blue), (green, red), (red, blue), (red, green)}

Eliminate Q

Domain(NT, SA, NSW) = {(blue, green, blue), (blue, red, blue), (red, blue, red), (red, green, red), (green, blue, green), (green, red, green)}

Simplify

Domain(SA, NSW) = {(blue, green), (blue, red), (green, blue), (green, red), (red, blue), (red, green), (green, red, green)}

Domain(NT, SA, NSW) = {(blue, green, blue), (blue, red, blue), (red, blue, red), (red, green, red), (green, blue, green), (green, red, green)}

Finish

Can identify all settings of SA, V, NSW for which there is guaranteed to be a consistent setting of the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars) + 1
While not(empty(Q))
 X = pop(Q)
 Xi = merge(X, neighbors(X))
 Simplify Xi
 remove_from_Q(Q, neighbors(X))
 add_to_Q(Q, Xi)
 i = i + 1

Note: Merge operation can be tricky to implement, depending upon constraint language.

Variable Elimination Issues

• How expensive is this?
 Exponential in size of largest merged variable set - 1. (AKA: induced tree width.)

• Is it sensitive to elimination ordering?
 Yes!
Variable Elimination Ordering

Is it better to start at the edges and work in, or at the center and work out?

Edges!

Variable Elimination Facts

• You can figure out the cost of a particular elimination ordering without actually constructing the tables
• Finding optimal elimination ordering is NP hard
• Good heuristics for finding near optimal orderings
• Another structural complexity measure
• Investment in finding good ordering can be amortized

Structural Complexity

• Structural complexity is a somewhat different view of computational complexity: depends upon problem features, not problem class
• For many problems structural complexity is quite manageable
• Idea: Why not convert other NP-hard problems to CSPs and use structural complexity measures, CSP algorithms to solve?

\[2^{\text{poly}(k)} \gg 2^k \]

Cutsets vs. Elimination

• Cutsets:
 – Linear space
 – Potential wins if cutset values simplify subproblems (Can get speedups that from content of constraints)
• Variable elimination:
 – Space exponential in tree width
 –Insensitive to content of constraints
• Preference depends on taste, problem

CSP Summary

• CSPs are a specialized language for describing certain types of decision problems
• We can formulate special heuristics and methods for problems that can be described in this language
• In general, CSPs are NP hard
• We can use structural measures of complexity to figure out which ones are really hard