
1

Review of
Basic Database Concepts

CPS 296.1
Topics in Database Systems

2

What�s a database system?
� According to Oxford Dictionary

� Database: an organized body of related information
� Database system, DataBase Management System, or

DBMS: a software system that facilitates the creation
and maintenance and use of an electronic database

� More precisely, a DBMS should support
� Efficient and convenient querying and updating of

large amounts of persistent data
� Safe, multi-user access

3

Two important questions
� What is the right API for a DBMS?

� Data model
� How is the data structured conceptually?

� Query language
� How do users ask queries about the data?

� How does the DBMS support the API?
� Query processing and optimization

� What is the most efficient way to answer a query?
� Transaction processing

� How are atomicity, consistency, isolation, and durability of
transaction ensured?

4

Entity-relationship (E/R) diagram
� Entities: students and courses
� Relationships: students enroll in courses

� Widely used for database design by humans
� DBMS does not need a graphical data model

Student
age

GPA

SID

name
Course

CID

title
Enroll

5

Before the relational �revolution�
� Hierarchical and network data models

� Relationships are modeled as pointers
� Queries require explicit pointer following

� Example: a simplified CODASYL query
Student.GPA := 4.0
FIND Student RECORD BY CALC-KEY
FIND OWNER OF CURRENT Student-Course SET
IF Course.CID = �CPS 296� THEN

PRINT Student.name

How about navigating from courses to students?

Assume that we can quickly find student records by GPA
Assume there is a pointer from students to courses

6

Physical data independence
� Problems with hierarchical and network data models

� Access to data is not declarative
� Whenever data is reorganized, applications must be

reprogrammed!

! Physical data independence
� Applications should not need to worry about how data is

physically structured and stored
� Applications should work with a logical data model and

declarative query language
� Leave the implementation details and optimization to DBMS

2

7

Relational data model
� A database is a collection of relations (or tables)
� Each relation has a list of attributes (or columns)
� Each relation contains a set of tuples (or rows)

� Duplicates not allowed

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

Student
CID title

CPS 296 Topics in Database Systems
CPS 216 Advanced Database Systems
CPS 116 Intro. to Database Systems

... ...

Course
SID CID
142 CPS 296
142 CPS 216
123 CPS 296
857 CPS 296
857 CPS 116
456 CPS 116
... ...

Enroll

8

Schema versus instance
� Schema (metadata)

� Structure and constraints over data
� Student (SID integer, name string, age integer, GPA float)
� Course (CID string, title string)
� Enroll (SID integer, CID integer)
� Student.SID is a key, Enroll.SID is a foreign key referencing

Student.SID, etc.
� Changes infrequently

� Instance
� Actual contents that conform to the schema

� { <142, Bart, 10, 2.3>, <123, Milhouse, 10, 3.1>, ...}
� { <CPS 296, Topics in Database Systems>, ...}
� { <142, CPS 296>, <142, CPS 216>, ...}

� Changes frequently

9

Relational algebra

Operator

� Core set of operators:
� Selection, projection, cross product, union, difference, and

renaming

� Additional, derived operators:
� Join, etc.

Operator

10

Selection
� Notation: σp (R)

� p is called a selection condition/predicate
� Output: only rows that satisfy p
� Example: Students with GPA higher than 3.0

σGPA > 3.0 (Student)
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

σGPA > 3.0

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

11

Projection
� Notation: πL (R)

� L is a list of columns in R
� Output: only the columns in L

� Duplicate rows are removed
� Example: age distribution of students

π age (Student)
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

π age

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

12

Cross product

� Notation: R × S
� Output: for each row r in R and each row s in S,

output a row rs (concatenation of r and s)
� Example: Student × Enroll

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

×
SID CID
142 CPS 296
142 CPS 216
123 CPS 296
... ...

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS 296
142 Bart 10 2.3 142 CPS 216
142 Bart 10 2.3 123 CPS 296
123 Milhouse 10 3.1 142 CPS 296
123 Milhouse 10 3.1 142 CPS 216
123 Milhouse 10 3.1 123 CPS 296
...

3

13

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

×
SID CID
142 CPS 296
142 CPS 216
123 CPS 296
... ...

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS 296
142 Bart 10 2.3 142 CPS 216
142 Bart 10 2.3 123 CPS 296
123 Milhouse 10 3.1 142 CPS 296
123 Milhouse 10 3.1 142 CPS 216
123 Milhouse 10 3.1 123 CPS 296
...

Derived operator: join

� Notation: R ><p S (shorthand for σ p (R × S))
� p is called a join condition/predicate

� Example: students and CIDs of their courses
Student >< Student.SID = Enroll.SID Enroll

><
Student.SID =

Enroll.SID

14

Union and difference
� Notation: R ∪ S

� R and S must have
identical schema

� Output:
� Same schema as R and S
� Contains all rows in R and

all rows in S, with
duplicates eliminated

� Notation: R − S
� R and S must have

identical schema

� Output:
� Same schema as R and S
� Contains all rows in R that

are not found in S

15

Renaming
� Notation: ρ S (R), or ρ S (A1 , A2 , ...) (R)
� Purpose: rename a table and/or its columns

� No real processing involved
� Used to avoid confusion caused by identical column names

� Example: all pairs of (different) students

Student Student

ρStudent2 (SID2, name2, age2, GPA2)ρStudent1 (SID1, name1, age1, GPA1)

>< SID1 < > SID2

16

Relational algebra example
� Names of students in CPS 296 with 4.0 GPA

Student

σGPA = 4.0

><Student.SID = Enroll.SID

Enroll

π name

σCID = �CPS 296�

� Compare this query to the CODASYL version!

17

SQL
� SQL (Structured Query Language)

� Pronounced �S-Q-L� or �sequel�
� The query language of every commercial DBMS

� Simplest form: SELECT A1, A2, �, An
FROM R1, R2, �, Rm
WHERE condition;

� Also called an SPJ (select-project-join) query
� Equivalent (more or less) to relational algebra query

π A1, A2, �, An
(σcondition (R1 × R2 × � × Rm))

� Unlike relational algebra, SQL preserves duplicates by default

18

SQL example
� Names of students in CPS 296 with 4.0 GPA

SELECT Student.name
FROM Student, Enroll
WHERE Enroll.CID = �CPS 296�
AND Enroll.SID = Student.SID
AND Student.GPA = 4.0;

� Compare this query to the CODASYL version!

4

19

More SQL features
SELECT [DISTINCT] list_of_output_columns
FROM list_of_tables
WHERE where_condition
GROUP BY list_of_group_by_columns
HAVING having_condition
ORDER BY list_of_order_by_columns;

Operational semantics
� FROM: take the cross product of list_of_tables
� WHERE: apply σwhere_condition

� GROUP BY: group result tuples according to list_of_group_by_columns
� HAVING: apply σhaving_condition to the groups
� SELECT: apply π list_of_output_columns (preserve duplicates)
� DISTINCT: eliminate duplicates
� ORDER BY: sort the result by list_of_order_by_columns

20

SQL example with aggregation
� Find the average GPA for each age group with at

least three students
SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) >= 3;

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
789 Jessica 10 4.2

GROUP BY SELECT
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
789 Jessica 10 4.2
857 Lisa 8 4.3
456 Ralph 8 2.3

age AVG(GPA)
10 3.2

HAVING
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
789 Jessica 10 4.2
857 Lisa 8 4.3
456 Ralph 8 2.3

21

Summary: relational query languages
� Not your general-purpose programming language

� Not expected to be Turing-complete
� Not intended to be used for complex calculations
� Amenable to much optimization

� More declarative than languages for hierarchical and
network data models
� No explicit pointer following

� Replaced by joins that can be easily reordered

� Next: How do we support relational query languages
efficiently? 22

Access paths
� Store data in ways to speed up queries

� Heap file: unordered set of records
� B+-tree index: disk-based balanced search tree with

logarithmic lookup and update
� Linear/extensible hashing: disk-based hash tables that can grow

dynamically
� Bitmap indexes: potentially much more compact
� And many more�

� One table may have multiple access paths
� One primary index that stores records directly
� Multiple secondary indexes that store pointers to records

23

Query processing methods
� The same query operator can be implemented in many

different ways
� Example: R ><R.A=S.B S

� Nested-loop join: for each tuple of R, and for each tuple of S,
join

� Index nested-loop join: for each tuple of R, use the index on
S.B to find joining S tuples

� Sort-merge join: sort R by R.A, sort S by S.B, and merge-join
� Hash join: partition R and S by hashing R.A and S.B, and join

corresponding partitions
� And many more�

24

Motivation for query optimization
� The same query can have many different execution plans
� Example: SELECT Student.name

FROM Student, Enroll
WHERE Enroll.CID = �CPS 296�
AND Enroll.SID = Student.SID
AND Student.GPA = 4.0;

� Plan 1: evaluate σGPA = 4.0(Student); for each result SID, find the
Enroll tuples with this SID and check if CID is CPS 296

� Plan 2: evaluate σCID = �CPS 296�(Enroll); for each result SID, find
the Student tuple with this SID and check if GPA is 4.0

� Plan 3: evaluate both σGPA = 4.0(Student) and σCID = �CPS

296�(Enroll), and join them on SID
� Any many more�

5

25

Query optimization
� A huge number of possible execution plans

� With different access methods, join order, join methods, etc.

� Query optimizer�s job
� Enumerate candidate plans

� Query rewrite: transform queries or query plans into equivalent ones

� Estimate costs of plans
� Use statistics such as histograms

� Pick a plan with reasonably low cost
� Dynamic programming
� Randomized search

26

Optimizing for I/O
Location Cycles Location Time
Registers 1 My head 1 min.
Memory 100 Washington D.C. 1.5 hr.
Disk 106 Pluto 2 yr.

(source: AlphaSort paper, 1995)
! I/O costs dominate database operations

� DBMS typically optimizes the number of I/O�s
� Example: Which of the following is a more efficient way

to process SELECT * FROM R ORDER BY R.A;?
� Use an available secondary B+-tree index on R.A: follow leaf

pointers, which are already ordered by R.A

� Just sort the table

