Integrating Web and Database Searches

CPS 296.1
Topics in Database Systems

Roadmap

• Rank aggregation: merging ranked results from different searches
 – Fagin et al. “Optimal Aggregation Algorithm for Middleware.”
 PODS, 2001

• Proximity search: finding all shortest paths in the link structure of a database

• WSQ: enhancing database queries with Web searches

Link structure of a database

• Table → records in the table; record → fields in the record; foreign key references; etc.
• Links have weights (≥1)
 – Smaller weight means closer relationship

Proximity search

• Returns a "find set" F
• Returns a "near set" N
• Returns objects in F, ranked by proximity to objects in N

Proximity versus text distance

• Text distance works on one-dimensional text
• Proximity works on data with tree or graph structure, e.g., link structure of a database, XML, and structured documents
• Example

```
<student>
  <name>Lisa Simpson</name>
  <age...<advisor...<advisor>...
  ...
  <school>Springfield Elementary</school>
</student>
```

Issues

• How to come up with a meaningful link structure for a database
 – What are the nodes? Links? Weights?
 ➢ Not addressed by this paper

• How to define proximity
 – Between one object (in F) and another (in N)
 – Between an object (in F) and a set of objects (N)
 ➢ Not a focus of this paper

• How to process proximity queries efficiently
Proximity functions

- Distance between objects \(f \) and \(n \):
 \[
 d(f, n) = \text{weight of the shortest path between } f \text{ and } n
 \]
- Bond between two objects \(f \) and \(n \):
 \[
 b(f, n) = \text{rank of } f \text{ in } F \times \text{rank of } n \text{ in } N / d(f, n)
 \]
 - \(b(f, n) \in [0, 1] \); bigger number means a stronger bond
 - \(t \) controls the impact of distance (the paper used \(t = 2 \))
- Proximity of \(f \) to \(N \):
 - Additive (used in the paper):
 \[
 \sum_{n \in N} b(f, n)
 \]
 - Maximum:
 \[
 \max_{n \in N} b(f, n)
 \]
 - Belief:
 \[
 1 - \prod_{n \in N} (1 - b(f, n))
 \]

Computing proximity

- Requires efficient computation of \(d(f, n) \)
 - Shortest-path problem
- Naïve approach: compute \(d(f, n) \) at run-time
 - Response time is unacceptable
 - Pre-compute \(d(f, n) \) for all pairs of \(f \) and \(n \)
 - Only need those \(d(f, n) \leq K \)
 - The paper used \(K = 12 \)
 - Above this threshold, \(b(f, n) \) becomes insignificant
 - You can write it in SQL!

Self-join algorithm

To compute shortest paths up to weight \(K \)

- Start with \(E_1 \) whose rows have form \((v_i, v_j, w_{ij})\)
 - \(w_{ij} \) is the weight of the link from \(v_i \) to \(v_j \)
- In general, \(E_l \) contains information about all shortest paths consisting of up to \(2^{l-1} \) links with weight not exceeding \(K \)
- Self-join \(E_l \) with itself to obtain \(E_{l+1} \)
- Stopping condition: \(l = \lceil \log_2 K \rceil + 1 \)
 - At this point, we have seen all paths consisting of up to \(K \) links

SQL for the self-join

- Here we assume directed edges (the paper assumes undirected edges)
- Construct shortest paths with up to \(2^l \) links from shortest paths with up to \(2^{l-1} \) links
 - Intuition: any shortest path with \(2 \) to \(2^l \) links can be broken into two shortest paths with \(1 \) to \(2^{l-1} \) links each
- \[
 \begin{align*}
 &\text{select } t1.v1 \text{ as new_v1, } t2.v2 \text{ as new_v2, } \\
 &\quad (t1.dist + t2.dist) \text{ as new_dist} \\
 &\text{from } E_l t1, E_l t2 \\
 &\text{where } t1.v2 = t2.v1 \text{ and } t1.v1 <> t2.v2 \\
 &\quad \text{and } t1.dist + t2.dist \leq K; \\
 \end{align*}
 \]

Bug in the paper?

- The paper has a stronger WHERE condition:
 - select \(t1.v1 \) as new_v1, \(t2.v2 \) as new_v2, \((t1.dist + t2.dist) \) as new_dist
 from \(E_l t1, E_l t2 \)
 where \(t1.v2 = t2.v1 \) and \(t1.v1 <> t2.v2 \)
 and \(t1.dist + t2.dist \leq 2^l \)
 and \(t1.dist + t2.dist \leq K; \)
- Try running the paper’s algorithm on
 \[
 \begin{array}{c}
 \text{3} \\
 \text{4} \\
 \text{1}
 \end{array}
 \]
 \(K = 8 \)

SQL for computing \(E_{l+1} \) from \(E_l \)

\[
E_{l+1} := \begin{cases}
\text{select new_v1, new_v2, min(new_dist) from} \\
\text{E_l t1, E_l t2} \\
\text{where t1.v2 = t2.v1 and t1.v1 <> t2.v2} \\
\text{and t1.dist + t2.dist <= 2^l} \\
\text{and t1.dist + t2.dist <= K;}
\end{cases}
\]

Why necessary?

Paths found by the second subquery make at least one hop...
Why self-join?

- Self-join algorithm
 - “Squaring” E_i in each step
 - E_i contains all shortest paths with up to 2^{i-1} links
 - $O(\log K)$ joins required
- An alternative algorithm
 - “Multiplying” E_i with E_1 in each step
 - E_i contains all shortest paths with exactly i links
 - $O(K)$ joins required

Hub indexing

- Reduce the amount of shortest-path information that needs to be pre-computed and stored
- Find hubs, nodes whose removal disconnects the graph
- Any path that connects subgraphs (e.g., A and B) must go through hubs
 - No need to remember the shortest paths between nodes in different subgraphs

An analogy

- Hierarchical path planning in AI (or MapQuest?)
 - Example: from Durham, NC to Fremont, CA
 - Use major waypoints: RDU (Raleigh-Durham Airport), SJC (San Jose Airport)
 - Look up how to go from RDU to SJC
 - Look up how to go from Durham to RDU, and how to go from SJC to Fremont

Issues

- Constructing the hub index
- Using the hub index to look up shortest paths
- Picking hubs

Constructing the hub index (slide 1)

- Suppose we have already picked H, a set of hubs
- When running the self-join algorithm, do not generate any path that goes through a hub in H
 - select $t_1.v_1$ as new_v1, $t_2.v_2$ as new_v2,
 - $(t_1.\text{dist} + t_2.\text{dist})$ as new_dist
 - from \mathcal{E}, t_1, E, t_2
 - where $t_1.v_2 = t_2.v_1$ and $t_1.v_1 \not= t_2.v_2$ and $t_1.v_2 \in H$
 - and $t_1.\text{dist} + t_2.\text{dist} \leq K$;
 - But do generate paths that begin and/or end with hubs

Constructing the hub index (slide 2)

- Output from the self-join algorithm contains shortest paths (without crossing any hubs) between:
 - Two non-hub nodes
 - A non-hub node and a hub
 - Two hubs
- Starting with the above output for two hubs, compute all shortest paths among hubs (now allowing crossing other hubs and non-hubs)
 - Compute in memory (assuming $|H|$ is small)
Hub index
- *Hub_Dist*: shortest distances between any two hubs
 - In memory
- *Dist*: shortest distances that do not cross any hubs
 - On disk
 - Note that we do not assume hubs disconnect the graph (although that would help with the performance)

Good case vs. Bad case

<table>
<thead>
<tr>
<th></th>
<th>Non-hubs</th>
<th>Hubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using hub indexes
- Between two hubs h and h'
 - Return $\text{Hub_Dist}(h, h')$ in memory
- Between a non-hub n and a hub h
 - Calculate $\text{Dist}(n, h) + \text{Hub_Dist}(h', h)$ for all h' in H
 - Pick the smallest
- Between two non-hubs n and n'
 - Check $\text{Dist}(n, n')$
 - Calculate $\text{Dist}(n, h) + \text{Hub_Dist}(h', h) + \text{Dist}(h', n)$ for all pairs of h, h' in H
 - Pick the smallest

Picking hubs
- Heuristic: select up to \sqrt{M} nodes with highest number of links
 - M is the size of memory available for Hub_Dist
- Intuition
 - These nodes are more likely to be on shortest paths
 - For example, if we assume that each link has a fixed probability of being on a shortest path
 - If a node with n links is not chosen as hub, n^2 tuples will be generated by the self join

Effectiveness of hub indexes
- Increasing memory usage → Materializing most things in Dist
- Materializing everything in Hub_Dist

Future work
- Better hub selection
- Optimizing a set of lookups (F and N)
 - Mentioned in paper
 - Get all data related to F (or N) in memory
 - Cluster nodes that often appear together in F and N
- Incremental maintenance
- Other index compression schemes (including lossy ones)
- More expressive queries
 - Find actors near (find movies near Cage)
 - Find movies not near Cage

WSQ (Web-Supported Query)
- Integrate
 - Keyword-based searches on the Web
 - SQL queries over a database
- Example: database with info about ACM SIG’s
 - Rank SIG’s by how often they appear on the Web near the keyword “Knuth”
- Issues
 - How to write the query (keyword searches + SQL)
 - How to process the query (requests to Web search engines + database query processing)
Integrating Web searches in SQL

- Virtual table
 - WebPages(T1, ..., Tn, URL, Rank, ...)
 - SearchExp (omitted here) depends on the search engine
 - T1, ..., Tn are the search terms
 - URL and Rank are returned by the search engine
 - A convenient view over WebPages:
 WebCount(T1, ..., Tn, Count) :=
 select T1, ..., Tn, count(*) as Count
 from WebPages group by T1, ..., Tn;
 - Not exactly (why?)
- Example: SIGs(Name, ...)
 select Name, Count
 from SIGs, WebCount
 where T1 = Name and T2 = 'Knuth'
 order by Count desc;

Limited access patterns

- Virtual tables can be accessed only in certain ways
 - Example of a valid access:
 select * from WebPages
 where T1 = ??? and Rank <= 10;
 - Examples of invalid accesses:
 select * from WebPages;
 select T1 from WebCounts where Count = 3;
- Issues
 - How to specify valid access patterns
 - How to process queries when access patterns are limited
 - Problem of “answering query using views”; to be addressed later in this course

Naïve query execution plan

- Synchronous iteration
 - For each SIGs.Name
 - Issue a Web request to count number of pages containing both SIGs.Name and Knuth
 - Wait for the request to complete and return the joined tuple (that is, synchronization in every iteration)

Problems and opportunities

- Problems
 - Latency of a single Web search request is very high
 - The database query processor is idle all the time
- Opportunities
 - Web can handle many concurrent requests
 - Parts of the query still can be processed without knowing the information returned from the Web searches
 - Asynchronous iteration

Asynchronous iteration plan

- Suppose a tuple T is waiting in ReqSync for a call C to complete
- What if C returns multiple (n) tuples?
 - ReqSync creates n – 1 additional copies of T and fills in the missing attribute values from the n returned tuples
- What if C returns one tuple?
 - ReqSync simply fills in the missing attribute values in T from the returned tuple
- What if C returns no tuple at all?
 - ReqSync removes T
How about parallel query processing?

- Traditional parallel query processing techniques
 - Intra-operator parallelism
 - Multiple threads work on the same operator by dividing up its work (e.g., multiple threads send WebPages requests for an EVScan operator)
 - Inter-operator parallelism
 - Different threads work on different operators in the pipeline (e.g., a selection operator can work on the current input tuple while its child works on producing the next input tuple)
 - Key idea: different tuples can be processed independently
- Asynchronous iteration also recognizes the fact that different parts of a tuple can be processed independently

Generating asynchronous plans

- Query: find three top pages for each SIG from AltaVista and from Google
- Convert synchronous EVScan to asynchronous AEVScan
- Insert ReqSync directly above AEVScan

Transforming asynchronous plans

- ReqSync percolation: “pull up” ReqSync as much as possible
- ReqSync consolidation: replace multiple adjacent ReqSync’s by one

Avoiding clashes

- Transform the query plan to delay operations that clash with ReqSync
- Examples
 - Pull up projections that clash with ReqSync
 - Pull up selections that clash with ReqSync
 - Against the conventional wisdom of pushing down selections
 - More work versus more wait
 - Convert joins to cross products followed by selections

More on percolation

- Intuition: synchronize as late as possible to minimize wait by the database query processor
- Cannot pull up ReqSync through an operator that clashes with it
 - \(O \) reads the missing information (e.g., a selection operator with condition Count > 100)
 - \(O \) projects away the placeholder (without the request identifier, ReqSync cannot perform tuple cancellation or generation properly)
 - \(O \) is an aggregation or existential operator (which requires knowing the exact count)

Example of the trade-off

Plan A

- Project (Word, URL, Count)
- Dep. Join (Lex.Word \(
\rightarrow\n\) WebCount.T1)
- Select (Count > 100,000)
- ReqSync
- Clash

Plan B

- Project (Word, URL, Count)
- Dep. Join (Lex.Word \(
\rightarrow\n\) WebPages.T1)
- Dep. Join (Lex.Word \(
\rightarrow\n\) WebCount.T1)
- Select (Count > 100,000)
- AEVScan (WebPages)
- AEVScan (WebCount)
- ReqSync
- Clash
Plan A versus Plan B

- Plan A
 - Too conservative
 - More waiting (for WebCount requests to complete)
- Plan B
 - Too aggressive
 - More work (many unnecessary WebPages requests)
- How would you execute this query?
 - A more adaptive query plan