Incremental View Maintenance

CPS 296.1
Topics in Database Systems

Materialized views

- A view can be materialized, i.e., its contents can be precomputed and stored by the DBMS
- Why materialized views?
- Query performance
- Reliability (if materialized elsewhere)
- Issues
- View maintenance: how to maintain the consistency between base data and materialized results
- View selection: how to choose what views to materialize
- Answering query using views: how to rewrite queries to make use of the materialized results

Review of bag algebra

- Closer to SQL than relational algebra
- A table is a bag (or multiset)
- Duplicate tuples are allowed
- The number of duplicates matters
- Bag algebra operators
$-\sigma_{p}($ selection $), \pi_{A}$ (projection), $\times($ cross product $)$
- Above three are the most commonly used
- \oplus (additive union), Θ (monus), min (minimum intersection), max (maximum union)
- \in (duplicate elimination)

Virtual views

- A view is defined by a query over base tables
- Example: CREATE VIEW V AS SELECT ... FROM R, S WHERE ...
- A view can be queried just as a normal table
- Example: SELECT* FROM V;
- Traditionally, database views are virtual
- DBMS stores the view definition query instead of contents
- Queries that reference views are rewritten ("expanded") using the view definition queries to reference base tables directly
- Why use virtual views?
- Access control
- Hiding complexity
- Logical data independence

View maintenance

- When base data changes, materialized views need to maintained
- Re-computation
- Incremental maintenance: compute and apply only the incremental changes to the materialized views
- Techniques are widely applicable
- Derived data maintenance (warehouse, cache, etc.)
- Integrity constraint checking

A theoretical introduction: Griffin and Libkin. "Incremental Maintenance of Views with Duplicates." SIGMOD, 1995

- Many practical issues to be addressed next week

Bag algebra operators (slide 1)

- Selection: $\sigma_{p}(S)$
- Filters out tuples
- Preserves duplicates (those that pass p)
- Projection: $\pi_{A}(S)$
- Projects away attributes not in A
- Preserves duplicates; that is, $|S|=\left|\pi_{A}(S)\right|$
- Cross product: $R \times S$
- Pairs up tuples
$-\operatorname{count}((r, s), R \times S)=\operatorname{count}(r, R) \cdot \operatorname{count}(s, S)$

Bag algebra operators (slide 2)

- Additive union: $R \oplus S$
$-\operatorname{count}(x, R \oplus S)=\operatorname{count}(x, R)+\operatorname{count}(x, S)$
- Example: $\{2$ apples $\} \oplus\{3$ apples $\}=\{5$ apples $\}$
- Monus: $R \ominus S$
$-\operatorname{count}(x, R \Theta S)=\operatorname{count}(x, R)-\operatorname{count}(x, S)$; or 0 if $\operatorname{count}(x, R)<\operatorname{count}(x, S)$
- Example: $\{2$ apples, 2 bananas $\} \ominus\{3$ apples, 1 banana $\}=$ \{1 banana\}
- Duplicate elimination: $\in(S)$
$-\operatorname{count}(x, \in(S))=1$; or 0 if x is not in S at all
- Example: $\in(\{2$ apples, 2 bananas $\})=\{1$ apple, 1 banana $\}$

Bag algebra operators (slide 3)

- Minimum intersection: $R \min S$
$-\operatorname{count}(x, R \min S)=\min (\operatorname{count}(x, R), \operatorname{count}(x, S))$
- Example: $\{2$ apples $\} \min \{3$ apples $\}=\{2$ apples $\}$
- Can you define it using the other operators?
- $R \min S=R \ominus(R \ominus S)$
- Maximum union: R max S
$-\operatorname{count}(x, R \max S)=\max (\operatorname{count}(x, R), \operatorname{count}(x, S))$
- Example: $\{2$ apples $\}$ max $\{3$ apples $\}=\{3$ apples $\}$
- Can you define it using the other operators?
- $R \max S=R \oplus(S \oplus R)=(R \oplus S) \oplus(R \min S)$

Pre-expression

- $S\left(R_{1}, \ldots, R_{n}\right)$ is a bag algebra query expression defining a view
- Pre-expression of S w.r.t. t, $\operatorname{pre}(t, S)$, is defined as $S\left(\left(R_{1} \oplus \nabla R_{1}\right) \oplus \Delta R_{1}, \ldots,\left(R_{n} \oplus \nabla R_{n}\right) \oplus \Delta R_{n}\right)$
- Intuitively represents full re-computation of the view
- Uses the current state of the database before the transaction is applied
- Computes the would-be contents of the view after the transaction
>Allows integrity constraint checking before committing a transaction

Problem

- Find expressions ∇S and ΔS such that pre (t, S) is equivalent to $(S \oplus \nabla S) \oplus \Delta S$

- In general, ∇S and ΔS may reference
- Current state of the database (before t is applied)
- Including base tables R_{1}, \ldots, R_{n}, and even S itself
- Incremental changes to the base tables, $\nabla R_{1}, \Delta R_{1}, \ldots$, $\nabla R_{n}, \Delta R_{n}$, to be made by t

"Good" solutions

- Minimality: $\nabla S \ominus S=\varnothing$
- Do not "over" delete
- Strong minimality: in addition to minimality, $\nabla S \min \Delta S=\varnothing$
- Do not delete a tuple and then insert it back again
- Why minimality?
- Rules out "bad" solutions such as $\nabla S=S, \Delta S=\operatorname{pre}(t, S)$
- Simplifies further propagation of deltas
- Does not rule out $\nabla S=S \ominus \operatorname{pre}(t, S), \Delta S=\operatorname{pre}(t, S) \oplus S$
$>$ Need to ensure ∇S and ΔS are easy to evaluate

Change propagation

- A change propagation equation describes how to "bubble up" a delta through a single operator
- For a complex expression, repeatedly apply change propagation equations until all deltas are "bubbled up" to the top of the expression
- The "bubbles" are the incremental changes
- The remaining expression corresponds exactly to the current state of the view

Change propagation equations (slide 2)

A non-obvious example

- $(R \oplus \Delta R) \ominus S=(R \ominus S) \oplus(\Delta R \ominus(S \ominus R))$
- Intuition
- Go ahead and insert ΔR ?
- Almost works; except when S "over" deletes R, it may cancel some effects of ΔR
- Another intuition
- Θ does not maintain negative counts
- $(S \ominus R)$ recovers these negative counts

Change propagation example

View $U=S \oplus T$

- $[(S \ominus \nabla S) \oplus \Delta S] \oplus[(T \ominus \nabla T) \oplus \Delta T]$
- $\{[(S \ominus \nabla S) \oplus \Delta S] \oplus(T \ominus \nabla T)\} \oplus \Delta T\}$ bubble up ΔT
- $\{[(S \oplus \nabla S) \oplus \Delta S] \oplus(T \oplus \nabla T)\} \oplus \Delta T, \begin{aligned} & \text { bubble up } \Delta S \\ & \text { - }\{(S \oplus \nabla S) \oplus(T \oplus \nabla T)\} \oplus \Delta S \oplus \Delta T\end{aligned}$
- $\{(S \oplus \nabla S) \oplus(T \ominus \nabla T)\} \oplus \Delta S \oplus \Delta T \gg$ bubble up ∇T
- $[(S \oplus \nabla S) \oplus T] \oplus(\nabla T \min T) \oplus \Delta S \oplus \Delta T$
- $(S \oplus T) \oplus(\nabla S \min S) \oplus(\nabla T \min T) \oplus \Delta S \oplus \Delta P^{\text {bubble up } \nabla S}$

That is, $\operatorname{pre}(t, U)=(U \ominus \nabla U) \oplus \Delta U$, where
$-\nabla U=(\nabla S \min S) \oplus(\nabla T \min T)$
$-\Delta U=\Delta S \oplus \Delta T$

Change propagation equations (slide 1)

Most commonly used ones

- $\overbrace{\sigma_{p}(R \ominus \nabla R)}^{\text {New view }}=\overbrace{\sigma_{p}(R)}^{\text {Old view }} \odot \overbrace{\sigma_{p}(\nabla R)}^{\text {Incremental changes }}$
- $\sigma_{p}(R \oplus \Delta R)=\sigma_{p}(R) \oplus \sigma_{p}(\Delta R)$
- $\pi_{A}(R \ominus \nabla R)=\pi_{A}(R) \ominus \pi_{A}(\nabla R \min R$
- $\pi_{A}(R \oplus \Delta R)=\pi_{A}(R) \oplus \pi_{A}(\Delta R) \quad$ Why not just $\Theta \pi_{A}(\nabla R)$?
- $(R \ominus \nabla R) \times S=(R \times S) \ominus(\nabla R \times S)$
- $(R \oplus \Delta R) \times S=(R \times S) \oplus(\Delta R \times S)$

Change propagation equations (slide 3)

The only examples where insertion (or deletion) into a base table results in deletion (or insertion, respectively) from the view

- $R \ominus(S \ominus \nabla S)=(R \ominus S) \oplus((\nabla S \min S) \ominus(S \ominus R))$
- $R \ominus(S \oplus \Delta S)=(R \ominus S) \ominus \Delta S$
- All other bag algebra operators are monotone!
- That is, more input means no less output

Minimality patch

- View $U=S \oplus T$
$-\nabla U=(\nabla S \min S) \oplus(\nabla T \min T)$
- $\Delta U=\Delta S \oplus \Delta T$
- Minimal, but not strongly minimal
- If x is in both ∇S and ΔT, then x is in both ∇U and ΔU
- Apply minimality "patch"
$-\nabla_{2} U=(U \min \nabla U) \ominus \Delta U$
$\left.-\Delta_{2} U=\Delta U \Theta \Theta \min \nabla U\right)$
- Intuition
- Do not over delete
- Do not delete something that will be inserted later
- Do not insert something that was deleted earlier

Recap of change propagation

- Change propagation by hand: complicated, nondeterministic, and may generate deltas that are not minimal!
- Given a view definition U, it would be nice to provide direct definitions for ∇U and ΔU
$>$ The paper provides two mutually recursive functions $\nabla(t, U)$ and $\Delta(t, U)$ to compute ∇U and ΔU directly
- Guarantees strong minimality
- Exploits the strong minimality assumption to simplify expressions

Deriving $\nabla(t, U)$ and $\Delta(t, S)$

Example: consider a view U of the form $\pi_{A}(S)$
$\operatorname{pre}\left(t, \pi_{A}(S)\right)$
$=\pi_{A}(\operatorname{pre}(t, S))$
$=\pi_{A}((S \ominus \nabla(t, S)) \oplus \Delta(t, S))$
$=\pi_{A}(S \ominus \nabla(t, S)) \oplus \pi_{A}(\Delta(t, S))$ bubble up $\Delta(t, S)$
$=\pi_{A}(S \ominus \nabla(t, S)) \oplus \pi_{A}(\Delta(t, S)), \quad$ bubble up $\nabla(t, S)$
$=\left(\pi_{A}(S) \oplus \pi_{A}(\nabla(t, S) \min S)\right) \oplus \pi_{A}(\Delta(t, S))$?
$=\left(\pi_{A}(S) \oplus \pi_{A}(\nabla(t, \overleftarrow{S}))\right) \oplus \pi_{A}(\Delta(t, S)) \quad \begin{aligned} & \text { simplification based on } \\ & \text { minimality assumption }\end{aligned}$
Finally, applying the minimality patch, we get:
$\nabla(t, U)=\pi_{A}(\nabla(t, S)) \ominus \pi_{A}(\Delta(t, S))$
$\Delta(t, U)=\pi_{A}(\Delta(t, S)) \ominus \pi_{A}(\nabla(t, S))$

SUM, COUNT, AVG, STDEV, ...

- Can be defined by expression $\varphi\left(\sum_{f f}, \sum_{f 2}, \ldots, \sum_{f n}\right)$, where each $\sum_{f}(R)$ sums up $f(x)$ for all x in R
$-\mathrm{SUM}=\sum_{i d}=\sum_{x \in R} x$
$-\operatorname{COUNT}=\sum_{1}=\sum_{x \in R} 1$
$-\mathrm{AVG}=\sum_{i d} / \sum_{1}$
- Each \sum_{f} can be materialized and maintained incrementally (assuming minimality of deltas)
$-\sum_{f}((R \ominus \nabla R) \oplus \Delta R)=\sum_{f}(R)-\sum_{f}(\nabla R)+\sum_{f}(\Delta R)$

Examples of $\nabla(t, U)$ and $\Delta(t, U)$

- For a view U of the form $\pi_{A}(S)$, where S is a subexpression
$-\nabla(t, U)$ is $\pi_{A}(\nabla(t, S)) \ominus \pi_{A}(\Delta(t, S))$
$-\Delta(t, U)$ is $\pi_{A}(\Delta(t, S)) \ominus \pi_{A}(\nabla(t, S))$
- For a view U of the form R, where R is just a base table
$-\nabla(t, U)$ is ∇R if t modifies R, or \varnothing otherwise
$-\Delta(t, U)$ is ΔR if t modifies R, or \varnothing otherwise
- Here we assume ∇R and ΔR are strongly minimal to begin with

Recursively go down the expression tree, until we hit the leaves (base tables)

Aggregate functions

- The paper does not present a complete solution
- Aggregates are not modeled in bag algebra
- No GROUP-BY is considered
- Aggregate maintenance is not handled in the same change propagation framework
>One aggregate operation is allowed at the very end

MIN, MAX

- Insertions

- No problem; simply compare and keep the current MIN/MAX
- Deletions
- No effect if the current MIN/MAX is not deleted
- Problematic if the current MIN/MAX is deleted; need to re-compute
- In general, re-computation is required if a transaction deletes the current MIN/MAX and does not insert a new MIN/MAX

Complexity analysis

- To compare re-computation and incremental maintenance, the paper defines two evaluation strategies
$-t_{\text {view }}$ is the cost function for re-computing Q
$-t_{\Delta}$ is the cost function for computing ∇Q and ΔQ
- And shows that when the size of base table changes tends to $0,\left(t_{\Delta}(\nabla Q)+t_{\Delta}(\Delta Q)\right) / t_{\text {view }}(\mathrm{Q})$ approaches 0
- Some concerns
- Cost function is too rough and $t_{\text {view }}$ may in fact overestimate
- $t_{\text {view }}$ says join is as expensive as cross product!
- Conclusion is too weak (understandably so)

Some afterthoughts

- Algebraic approach has its advantages
- Easy to prove correctness
- Easy to add new operators to the language (just add more change propagation equations)
- Delta expressions can be optimized by a query optimizer
- But
- Can we handle aggregates in the same algebraic framework?
- Are these heavy machinery and hairy expressions necessary/efficient in practice?
- Why use pre-state of the database for maintenance? What about using after-state?
- Using the after-state enables lazy view maintenance

