

Virtual views

- A view is defined by a query over base tables - Example: CREATE VIEW *V* AS SELECT ... FROM *R*, *S* WHERE ...;
- A view can be queried just as a normal table
 Example: SELECT * FROM V;
- · Traditionally, database views are virtual
 - DBMS stores the view definition query instead of contents
 - Queries that reference views are rewritten ("expanded") using the view definition queries to reference base tables directly
- Why use virtual views?
 - Access control
 - Hiding complexity
 - Logical data independence

Materialized views

- A view can be materialized, i.e., its contents can be precomputed and stored by the DBMS
- · Why materialized views?
 - Query performance
 - Reliability (if materialized elsewhere)
- Issues
 - View maintenance: how to maintain the consistency between base data and materialized results
 - View selection: how to choose what views to materialize
 - Answering query using views: how to rewrite queries to make use of the materialized results

View maintenance

- When base data changes, materialized views need to maintained
 - Re-computation
 - Incremental maintenance: compute and apply only the incremental changes to the materialized views
- · Techniques are widely applicable
 - Derived data maintenance (warehouse, cache, etc.)
 - Integrity constraint checking
- A theoretical introduction: Griffin and Libkin. "Incremental Maintenance of Views with Duplicates." SIGMOD, 1995
- Many practical issues to be addressed next week

Review of bag algebra

- Closer to SQL than relational algebra
- A table is a bag (or multiset)
 - Duplicate tuples are allowed
 - The number of duplicates matters
- Bag algebra operators
 - σ_p (selection), π_A (projection), × (cross product)
 Above three are the most commonly used
 - \oplus (additive union), \ominus (monus), min (minimum intersection), max (maximum union)
 - \in (duplicate elimination)

Bag algebra operators (slide 1)

- Selection: $\sigma_p(S)$
 - Filters out tuples
 - Preserves duplicates (those that pass *p*)
- Projection: $\pi_A(S)$
 - Projects away attributes not in A
 - Preserves duplicates; that is, $|S| = |\pi_A(S)|$
- Cross product: $R \times S$
 - Pairs up tuples
 - $-\operatorname{count}((r, s), R \times S) = \operatorname{count}(r, R) \cdot \operatorname{count}(s, S)$

5

Bag algebra operators (slide 2)

- Additive union: $R \oplus S$
 - $-\operatorname{count}(x, R \oplus S) = \operatorname{count}(x, R) + \operatorname{count}(x, S)$
 - Example: $\{2 \text{ apples}\} \oplus \{3 \text{ apples}\} = \{5 \text{ apples}\}$
- Monus: $R \ominus S$
 - $-\operatorname{count}(x, R \ominus S) = \operatorname{count}(x, R) \operatorname{count}(x, S);$
 - or 0 if count(x, R) < count(x, S)
 - Example: {2 apples, 2 bananas} \ominus {3 apples, 1 banana} = {1 banana}
- Duplicate elimination: \in (S)
 - $\operatorname{count}(x, \in (S)) = 1$; or 0 if x is not in S at all
 - Example: $\in (\{2 \text{ apples}, 2 \text{ bananas}\}) = \{1 \text{ apple}, 1 \text{ banana}\}$

Bag algebra operators (slide 3)

- Minimum intersection: R min S
 - $-\operatorname{count}(x, R \min S) = \min(\operatorname{count}(x, R), \operatorname{count}(x, S))$
 - Example: $\{2 \text{ apples}\} \min \{3 \text{ apples}\} = \{2 \text{ apples}\}$
 - Can you define it using the other operators? • $R \min S = R \ominus (R \ominus S)$
- Maximum union: *R* max *S*
 - $-\operatorname{count}(x, R \max S) = \max(\operatorname{count}(x, R), \operatorname{count}(x, S))$
 - Example: $\{2 \text{ apples}\} \max \{3 \text{ apples}\} = \{3 \text{ apples}\}$
 - Can you define it using the other operators?
 - $R \max S = R \oplus (S \ominus R) = (R \oplus S) \ominus (R \min S)$

Pre-expression

- *S*(*R*₁, ..., *R*_n) is a bag algebra query expression defining a view
- Pre-expression of *S* w.r.t. *t*, pre(*t*, *S*), is defined as $S((R_1 \ominus \nabla R_1) \oplus \Delta R_1, ..., (R_n \ominus \nabla R_n) \oplus \Delta R_n)$
 - Intuitively represents full re-computation of the view
 - Uses the current state of the database before the transaction is applied
 - Computes the would-be contents of the view after the transaction

10

Allows integrity constraint checking before committing a transaction

"Good" solutions
Minimality: ∇S Θ S = Ø

Do not "over" delete

Strong minimality: in addition to minimality, ∇S min ΔS = Ø

Do not delete a tuple and then insert it back again

Why minimality?

Rules out "bad" solutions such as ∇S = S, ΔS = pre(t, S)
Simplifies further propagation of deltas

Does not rule out ∇S = S Θ pre(t, S), ΔS = pre(t, S) Θ S
Need to ensure ∇S and ΔS are easy to evaluate

Change propagation

- A change propagation equation describes how to "bubble up" a delta through a single operator
- For a complex expression, repeatedly apply change propagation equations until all deltas are "bubbled up" to the top of the expression
 - The "bubbles" are the incremental changes
 - The remaining expression corresponds exactly to the current state of the view

13

Change propagation equations (slide 1)

Most commonly used ones

New view Old view Incremental changes
• $\overline{\sigma_p(R \odot \nabla R)} = \overline{\sigma_p(R)} \odot \overline{\sigma_p(\nabla R)}$
• $\sigma_p(R \oplus \Delta R) = \sigma_p(R) \oplus \sigma_p(\Delta R)$
• $\pi_A(R \ominus \nabla R) = \pi_A(R) \ominus \pi_A(\nabla R \min R)$
• $\pi_A(R \oplus \Delta R) = \pi_A(R) \oplus \pi_A(\Delta R)$ Why not just $\ominus \pi_A(\nabla R)$?
• $(R \ominus \nabla R) \times S = (R \times S) \ominus (\nabla R \times S)$
• $(R \oplus \Delta R) \times S = (R \times S) \oplus (\Delta R \times S)$
14

16

- That is, more input means no less output

Recap of change propagation

- · Change propagation by hand: complicated, nondeterministic, and may generate deltas that are not minimal!
- Given a view definition U, it would be nice to provide direct definitions for ∇U and ΔU
- > The paper provides two mutually recursive functions $\nabla(t, U)$ and $\Delta(t, U)$ to compute ∇U and ΔU directly
 - Guarantees strong minimality
 - Exploits the strong minimality assumption to simplify expressions

Examples of $\nabla(t, U)$ and $\Delta(t, U)$

- For a view U of the form $\pi_A(S)$, where S is a subexpression
 - $\nabla(t, U)$ is $\pi_A(\nabla(t, S)) \ominus \pi_A(\Delta(t, S))$
 - $-\Delta(t, U)$ is $\pi_{4}(\Delta(t, S)) \ominus \pi_{4}(\nabla(t, S))$
- For a view U of the form R, where R is just a base table
 - $-\nabla(t, U)$ is ∇R if t modifies R, or \emptyset otherwise
 - $-\Delta(t, U)$ is ΔR if t modifies R, or \emptyset otherwise
 - Here we assume ∇R and ΔR are strongly minimal to begin with
- > Recursively go down the expression tree, until we hit the leaves (base tables) 20

SUM, COUNT, AVG, STDEV, ... • Can be defined by expression $\varphi(\sum_{f1}, \sum_{f2}, ..., \sum_{fn})$, where each $\sum_{f} (R)$ sums up f(x) for all x in R - SUM $= \sum_{id} = \sum_{x \in R} x$ - COUNT $= \sum_{1} = \sum_{x \in R} 1$ $-AVG = \sum_{id} / \sum_{1}$ • Each \sum_{t} can be materialized and maintained incrementally (assuming minimality of deltas) $-\sum_{f} ((R \ominus \nabla R) \oplus \Delta R) = \sum_{f} (R) - \sum_{f} (\nabla R) + \sum_{f} (\Delta R)$

MIN, MAX Insertions - No problem; simply compare and keep the current MIN/MAX - No effect if the current MIN/MAX is not deleted to re-compute

23

19

- Deletions
 - Problematic if the current MIN/MAX is deleted; need
- In general, re-computation is required if a transaction deletes the current MIN/MAX and does not insert a new MIN/MAX 24

Complexity analysis

- To compare re-computation and incremental maintenance, the paper defines two evaluation strategies
 - $-t_{\rm view}$ is the cost function for re-computing Q
 - $-t_{\Delta}$ is the cost function for computing ∇Q and ΔQ
- And shows that when the size of base table changes tends to 0, $(t_{\Delta}(\nabla Q) + t_{\Delta}(\Delta Q))/t_{\text{view}}(Q)$ approaches 0
- Some concerns
 - Cost function is too rough and t_{view} may in fact overestimate
 t_{view} says join is as expensive as cross product!
 - Conclusion is too weak (understandably so)

25

Some afterthoughts

- · Algebraic approach has its advantages
 - Easy to prove correctness
 - Easy to add new operators to the language (just add more change propagation equations)
 - Delta expressions can be optimized by a query optimizer

• But

- Can we handle aggregates in the same algebraic framework?
- Are these heavy machinery and hairy expressions necessary/efficient in practice?
- Why use pre-state of the database for maintenance? What about using after-state?
 - Using the after-state enables lazy view maintenance

26