
1

Practical
Incremental View Maintenance

CPS 296.1
Topics in Database Systems

2

Roadmap
� Zhuge et al. �View Maintenance in a Warehousing Environment.�

SIGMOD, 1995

� Identified the problem of changing base table states
� Proposed the idea of compensation

� Salem et al. �How to Roll a Join: Asynchronous Incremental View
Maintenance.� SIGMOD, 2000

� Proposed the idea of asynchronous change
propagation based on compensation

� Prototyped in a commercial DBMS

3

Data warehousing
� The ETL process

� Extract data from operational data sources
� Transform (cleanse and integrate) data
� Load data into a central warehouse

� Data warehouse data = materialized views over
source data
� Supports fast OLAP (On-Line Analytical Processing)
� Needs to be kept up-to-date w.r.t. source data

!The view maintenance problem!
4

Correct view maintenance

� Update U1 = insert(S, [2, 3]) occurs at the source and is
reported to the warehouse

� Warehouse sends Q1 = πW (R >< [2, 3]) to the source
� Recall change propagation equations

R >< (S ⊕ ∆S) = (R >< S) ⊕ (R >< ∆S)
πW (T ⊕ ∆T) = πW (T) ⊕ πW (∆T)

� Source evaluates Q1 and returns answer A1 = [1]
� Warehouse receives A1 and adds it to the view

Source: Warehouse:
R: W X S: X Y πW (R >< S): W

1 2 2 4 1
2 3 1

5

Observations
� To maintain a warehouse view, we may need to

send queries back to the sources
� For a join view, we need to join a delta with the other

base tables
� Source queries are not needed for selection and

projection views (assuming minimal deltas, i.e., no
over-delete)

� � Unless we store enough information at the
warehouse to make it self-maintainable
� Thursday

6

A maintenance anomaly

� Source executes and sends U1 = insert(S, [2, 3])
� Warehouse receives U1 and sends Q1 = πW (R >< [2, 3])
� Source executes and sends U2 = insert(R, [4, 2])
� Warehouse receives U2 and sends Q2 = πW ([4, 2] >< S)
� Source receives and evaluates Q1, returns A1 = [1], [4]
� Warehouse receives A1 and adds [1], [4] to the view
� Source receives and evaluates Q2, returns A2 = [4]
� Warehouse receives A2 and adds [4] to the view

Source: Warehouse:
R: W X S: X Y πW (R >< S): W

1 2 2 3
4 2

1
4
4

Wrong!

2

7

Another maintenance anomaly

� Source executes and sends U1 = delete(R, [1, 2])
� Warehouse receives U1 and sends Q1 = πW ([1, 2] >< S)
� Source executes and sends U2 = delete(S, [2, 3])
� Warehouse receives U2 and sends Q2 = πW (R >< [2, 3])
� Source receives and evaluates Q1, returns A1 = ∅
� Warehouse receives A1 and does nothing
� Source receives and evaluates Q2, returns A2 = ∅
� Warehouse receives A2 and does nothing

Source: Warehouse:
R: W X S: X Y πW (R >< S): W

1 2 2 3 1Wrong!

8

What went wrong?
� Change propagation equations should be

evaluated over the original state of the base tables
� Example: R >< (S ⊕ ∆S) = (R >< S) ⊕ (R >< ∆S),

where (R >< ∆S) should read the state of R at the time
when ∆S occurs

� But when source receives the maintenance query,
base tables might have changed already
� Example: R changes after the warehouse receives ∆S

and before the source receives (R >< ∆S)

9

Solution: compensation
� Augment maintenance queries with compensating

queries to offset the effect of concurrent updates
� Example

� Warehouse receives ∆S
� Warehouse sends Q1 = (R >< ∆S) to source
� Warehouse receives ∆R before receiving answer to Q1

� Instead of just sending Q2 = (∆R >< S), warehouse
sends Q2 = (∆R >< S) ! (∆R >< ∆S), where the term
(∆R >< ∆S) compensates for Q1

10

ECA (Eager Compensating Algorithm)
� Warehouse maintains UQS (Unanswered Query Set)

� That is, the set of queries that were sent by the warehouse, but
whose answers have not been received

� When warehouse receives source update Ui
� Formulate a maintenance query Qi based on Ui
� For each query in UQS, formulate a compensating query Q�

based on Ui, and augment Qi with ! Q�
� Send the augmented Qi to the source

� Assumption: If Aj is received after Ui, then Aj has seen
the effect of Ui
� Send the message in the same transaction
� Assume in-order message delivery

11

A note on negative deltas
� If tuples are allowed to have negative counts,

then we can capture all changes in a single ∆R
rather than the pair ∇R and ∆R

� Everything continues to work
� ⊕ adds counts of matching tuples
� ! subtracts counts of matching tuples
� × multiplies tuple counts

� Yes, negative times negative is positive

12

ECA example

� U1 = insert(R, [4, 2])
� Q1 = πW ([4, 2] >< S >< T)
� U2 = insert(T, [5, 3])
� Q2 = πW (R >< S >< [5, 3]) ! πW ([4, 2] >< S >< [5, 3])
� U3 = insert(S, [2, 5])
� Q3 = πW (R >< [2, 5] >< T) ! πW ([4, 2] >< [2, 5] >< T)
! (πW (R >< [2, 5] >< [5, 3]) ! πW ([4, 2] >< [2, 5] >< [5, 3])

� A1 = [4]; A2 = [1]; A3 = ∅

Source: Warehouse:
R: W X S: X Y T: Y Z πW (R >< S >< T): W

1 2
4 2

5 32 5

for Q1

for Q1

for Q2

4
1

3

13

Summary
� Problem: changing base table states
� Solution: compensation
� Trick: negative counts

� Lots, lots of follow-on work
� More efficient algorithms
� Multi-source version
� Parallel version

14

Traditional database view maintenance

� Incremental maintenance is executed as an atomic
transaction
� Blocks updates to base tables
� Blocks reads of views
!Could be broken into separate propagation and apply

phases
� The maintenance transaction is synchronous and

needs to see particular states of the base tables
around the time of the refresh

15

Synchronous propagation using pre-states

Griffin and Libkin
� V = R >< S
� a: last refresh time; b: current refresh time
� Va, b = Ra, b >< Sa ⊕ Ra >< Sa, b ⊕ Ra , b >< Sa, b

R

S

a b

a
b

Ra Ra, b

Sa

Sa, b

V
Pre-states are hard
to obtain sometimes

16

Synchronous propagation using after-states

Oracle (?)
� V = R >< S
� a: last refresh time; b: current refresh time
� Va, b = Ra, b >< Sb ⊕ Rb >< Sa, b ! Ra, b >< Sa, b

R

S

a b

a
b

Ra Ra, b

Sa

Sa, b

V

17

Synchronous propagation using mixed states

� V = R >< S
� a: last refresh time; b: current refresh time
� Va, b = Ra, b >< Sa ⊕ Rb >< Sa, b

R

S

a b

a
b

Ra Ra, b

Sa

Sa, b

V

Simpler, but harder
to implement

18

Asynchronous propagation
� V = R >< S
� a: last refresh time
� b: target refresh time
� c, d: some later points

in time
� Va, b = Ra, b >< Sc

! Ra, b >< Sb, c
⊕ Rd >< Sa, b
! Ra, d >< Sa, b

R

S

a b

a
b

Ra Ra, b

Sa

Sa, b

V
d

c

4

19

Advantages of asynchronous propagation

� Flexibility: Reading of base tables can happen
any later time (independent of a and b)
� Although every read of a base table must be properly

compensated
� More concurrency: Each term can be evaluated in

a different transaction

Ra, b >< Sc ! Ra, b >< Sb, c ⊕ Rd >< Sa, b ! Ra, d >< Sa, b

forward
query

compensation
query

compensation
query

forward
query

20

Continuous propagation process
� Choose a propagation

interval length δ
� Asynchronously

compute Vt, t + δ
� May be executed

after t + δ
� t← t + δ
� Repeat

� δ is tunable
R

S

t

V

t δ δ δ

δ

δ

δ

High-water mark t + δ

High-water mark t + 2δ

High-water mark t + 3δ

21

Apply process
� Delta timestamps

� Assume that base table delta tuples are timestamped by
transactions that update them

� Compute timestamps for view delta tuples
� Join returns the smallest timestamp (may sound counterintuitive, but

works with compensation)

� An independent apply process can refresh the view to
any time t before the current high-water mark

� Without these timestamps, the apply process can refresh
the view only to a high-water mark

22

Example of timestamp computation
� V = R >< S

� Last refreshed at time t; need to refresh to time t�
� At time a, insert(R, x); at time b, insert(S, y)

� t < a < b < t�
� At time c > t�, calculate forward query Rt, t� >< Sc

� Adds xy to view delta with timestamp a
� Compensate by Rt, t� >< St�, c

� Empty
� At time d > t�, calculate forward query Rd >< St, t�

� Adds xy to view delta with timestamp b
� Compensate by Rt, d >< St, t�

� Subtracts xy from view delta with timestamp a

← Correct effect

23

Rolling propagation
� Flexibility: Different base

tables may be updated at
different rates, so allow
each base table�s
propagation interval to be
tuned independently

� Efficiency: Do not set
target refresh time for a
view in advance; less
compensation work They do not initiate compensation

24

Complications
� Regions that require compensation may not be

rectangular
� A query always returns a rectangular region
� So multiple compensation queries may be needed

� High-water marks are no longer determined in
advance
� The current high-water mark must be calculated as the

beginning of the oldest query that has not been
completely compensated

� Prior to this point, all forward queries have been completely
compensated

5

25

Implementation issues

� Detecting and timestamping base table deltas
� Log-based approach
� Trigger-based approach

� Determining the evaluation time of a query (or
the base table state that it reads)

26

Log-based approach
� Used by the paper on DB2
� A tool continuously examines the database transaction

log and populates base table deltas
� Transaction ID
� Commit sequence number (unique �timestamp�)
� Commit timestamp (not necessarily unique)

� Advantage: does not disrupt normal database operations
� Disadvantage: needs to scan through many unnecessary

log entries if we are only interested in a few base tables

27

Trigger-based approach

� Define a trigger on the base table that fires whenever the
table is updated and populates the delta table
� What is the timestamp then?

� A regular trigger has no access to the commit sequence number because
it is not known until commit time

� A commit trigger (fired at commit time) is required but is not a standard
DBMS feature

� Disadvantage: interferes with normal database operations

28

Determining query evaluation time
� We need the commit sequence number of the

transaction in which a propagation query is
evaluated

� But it is difficult to tell which log entries belong
to this particular transaction

!Hack: make this transaction write a unique value
into a special table

!These solutions are very system-dependent!

29

Next time

� All the continuous changing base table states give
me headaches!

!Self-maintainable views�do not rely on base
tables for view maintenance!

