Practical Incremental View Maintenance

CPS 296.1
Topics in Database Systems

Roadmap

• Zhuge et al. “View Maintenance in a Warehousing Environment.” SIGMOD, 1995
 – Identified the problem of changing base table states
 – Proposed the idea of compensation

 – Proposed the idea of asynchronous change propagation based on compensation
 – Prototyped in a commercial DBMS

Data warehousing

• The ETL process
 – Extract data from operational data sources
 – Transform (cleanse and integrate) data
 – Load data into a central warehouse
• Data warehouse data = materialized views over source data
 – Supports fast OLAP (On-Line Analytical Processing)
 – Needs to be kept up-to-date w.r.t. source data
 ▶️ The view maintenance problem!

Correct view maintenance

Source:

\[
\begin{array}{c|c}
R & W \ \ X \\
1 & 2 & 2 \ \\
1 & 2 & 3
\end{array}
\]

Source: Warehouse:

\[
\begin{array}{c|c|c}
S: & X \ \ Y \\
2 & 3 & 4 \ \\
2 & 4 & 1
\end{array}
\]

\[
\pi_{\text{Wy}} (R \bowtie \tau S): W
\]

\[
\begin{array}{c|c}
1 & 1 \ \\
4 & 1
\end{array}
\]

• Update \(U_1 = \text{insert}(S, [2, 3]) \) occurs at the source and is reported to the warehouse
• Warehouse sends \(Q_1 = \pi_{\text{Wy}} (R \bowtie \tau [2, 3]) \) to the source
 – Recall change propagation equations
 \[
 R \bowtie \tau (S \oplus \Delta S) = (R \bowtie \tau S) \oplus (R \bowtie \tau \Delta S)
 \]
 \[
 \pi_{\text{Wy}} (T \oplus \Delta T) = \pi_{\text{Wy}} (T) \oplus \pi_{\text{Wy}} (\Delta T)
 \]
• Source evaluates \(Q_1 \) and returns answer \(A_1 = [1] \)
• Warehouse receives \(A_1 \) and adds it to the view

A maintenance anomaly

Source:

\[
\begin{array}{c|c|c}
R: & W \ \ X \\
1 & 2 & 2 \ \\
4 & 2 & 3
\end{array}
\]

Source: Warehouse:

\[
\begin{array}{c|c|c}
S: & X \ \ Y \\
2 & 3 & 4 \ \\
2 & 4 & 1
\end{array}
\]

\[
\pi_{\text{Wy}} (R \bowtie \tau S): W
\]

\[
\begin{array}{c|c}
1 & 1 \ \\
4 & 1
\end{array}
\]

• Source executes and sends \(U_1 = \text{insert}(S, [2, 3]) \)
• Warehouse receives \(U_1 \) and sends \(Q_1 = \pi_{\text{Wy}} (R \bowtie \tau [2, 3]) \)
• Source executes and sends \(U_2 = \text{insert}(R, [4, 2]) \)
• Warehouse receives \(U_2 \) and sends \(Q_2 = \pi_{\text{Wy}} ((R, [4, 2]) \bowtie \tau S) \)
• Source receives and evaluates \(Q_1 \), returns \(A_1 = [1] \)
• Warehouse receives \(A_1 \) and adds \([1] \)
• Source receives and evaluates \(Q_2 \), returns \(A_2 = [4] \)
• Warehouse receives \(A_2 \) and adds \([4] \) to the view

Observations

• To maintain a warehouse view, we may need to send queries back to the sources
 – For a join view, we need to join a delta with the other base tables
 – Source queries are not needed for selection and projection views (assuming minimal deltas, i.e., no over-delete)
 – … Unless we store enough information at the warehouse to make it self-maintainable
 – Thursday

Wrong!
Another maintenance anomaly

Source:
\[R: W X S: X Y \]
\[\pi_R (R \bowtie S): W \]

- Source executes and sends \(U_1 = \text{delete}(R, [2, 3]) \)
- Warehouse receives \(U_1 \) and sends \(Q_2 = \pi_W (R \bowtie [2, 3]) \)
- Source executes and sends \(U_2 = \text{delete}(S, [4, 2]) \)
- Warehouse receives \(U_2 \) and sends \(Q_2 = \pi_W (R \bowtie [4, 2]) \)
- Source receives and evaluates \(Q_1 \), returns \(A_1 = \emptyset \)
- Source receives \(A_1 \) and does nothing
- Source receives and evaluates \(Q_2 \), returns \(A_2 = \emptyset \)
- Warehouse receives \(A_2 \) and does nothing

What went wrong?

- Change propagation equations should be evaluated over the original state of the base tables
 - Example: \(R \bowtie (S \bowtie \Delta S) = (R \bowtie S) \bowtie (R \bowtie \Delta S) \)
 where \((R \bowtie \Delta S) \) should read the state of \(R \) at the time when \(\Delta S \) occurs
- But when source receives the maintenance query, base tables might have changed already
 - Example: \(R \) changes after the warehouse receives \(\Delta S \) and before the source receives \((R \bowtie \Delta S) \)

Solution: compensation

- Augment maintenance queries with compensating queries to offset the effect of concurrent updates
- Example
 - Warehouse receives \(\Delta S \)
 - Warehouse sends \(Q_1 = (R \bowtie \Delta S) \) to source
 - Warehouse receives \(\Delta R \) before receiving answer to \(Q_1 \)
 - Instead of just sending \(Q_2 = (\Delta R \bowtie S) \), warehouse sends \(Q_2 = (\Delta R \bowtie \Delta S) \bowtie (\Delta R \bowtie \Delta S) \), where the term \((\Delta R \bowtie \Delta S) \) compensates for \(Q_1 \)

A note on negative deltas

- If tuples are allowed to have negative counts, then we can capture all changes in a single \(\Delta R \) rather than the pair \(\nabla R \) and \(\Delta R \)
- Everything continues to work
 - \(\oplus \) adds counts of matching tuples
 - \(\ominus \) subtracts counts of matching tuples
 - \(\times \) multiplies tuple counts
 - Yes, negative times negative is positive

ECA (Eager Compensating Algorithm)

- Warehouse maintains \(UQS \) (Unanswered Query Set)
 - That is, the set of queries that were sent by the warehouse, but whose answers have not been received
- When warehouse receives source update \(U_i \)
 - Formulate a maintenance query \(Q_i \) based on \(U_i \)
 - For each query in \(UQS \), formulate a compensating query \(Q_i' \) based on \(U_i \)
 and augment \(Q_i \) with \(\ominus Q_i' \)
 - Send the augmented \(Q_i \) to the source
- Assumption: If \(A_j \) is received after \(U_i \), then \(A_j \) has seen the effect of \(U_i \)
 - Send the message in the same transaction
 - Assume in-order message delivery

ECA example

Source:
\[R: W X S: X Y T: Y Z \]
\[\pi_R (R \bowtie S \bowtie T): W \]
\[1 2 \]
\[2 5 \]
\[3 4 \]
\[2 4 \]
\[1 \]

- \(U_1 = \text{insert}(R, [4, 2]) \)
- \(Q_1 = \pi_R ([4, 2] \bowtie S \bowtie T) \)
- \(U_2 = \text{insert}(T, [5, 3]) \)
- \(Q_2 = \pi_R (R \bowtie [5, 3]) \)
- \(U_3 = \text{insert}(S, [2, 5]) \)

- \(Q_1 = \pi_R (R \bowtie [2, 5] \bowtie [5, 3]) \)
- \(Q_2 = \pi_R ([4, 2] \bowtie S \bowtie [5, 3]) \)
- \(A_1 = [4]; A_2 = [1]; A_3 = \emptyset \)
Summary

- Problem: changing base table states
- Solution: compensation
- Trick: negative counts
- Lots, lots of follow-on work
 - More efficient algorithms
 - Multi-source version
 - Parallel version

Traditional database view maintenance

- Incremental maintenance is executed as an atomic transaction
 - Blocks updates to base tables
 - Blocks reads of views
 - Could be broken into separate propagation and apply phases
- The maintenance transaction is synchronous and needs to see particular states of the base tables around the time of the refresh

Synchronous propagation using pre-states

Griffin and Libkin

- $V = R \triangleright\triangleright S$
- a: last refresh time; b: current refresh time
- $V_{a,b} = R_{a,b} \triangleright\triangleright S_a \oplus R_a \triangleright\triangleright S_{a,b}$

Synchronous propagation using after-states

Oracle (?)

- $V = R \triangleright\triangleright S$
- a: last refresh time; b: current refresh time
- $V_{a,b} = R_{a,b} \triangleright\triangleright S_b \oplus R_b \triangleright\triangleright S_{a,b}$

Synchronous propagation using mixed states

- $V = R \triangleright\triangleright S$
- a: last refresh time; b: current refresh time
- $V_{a,b} = R_{a,b} \triangleright\triangleright S_a \oplus R_b \triangleright\triangleright S_{a,b}$

Asynchronous propagation

- $V = R \triangleright\triangleright S$
- a: last refresh time
- b: target refresh time
- c, d: some later points in time
- $V_{a,b} = R_{a,b} \triangleright\triangleright S_c \oplus R_{a,b} \triangleright\triangleright S_{a,c} \oplus R_{a,b} \triangleright\triangleright S_{a,b}$
Advantages of asynchronous propagation

- Flexibility: Reading of base tables can happen any later time (independent of \(a\) and \(b\))
 - Although every read of a base table must be properly compensated
- More concurrency: Each term can be evaluated in a different transaction

\[
R_{a,b} \triangleright S_c \oplus R_{a,b} \triangleright S_d \oplus R_{a,d} \triangleright S_{a,b}
\]

\[\text{forward query} \quad \text{compensation query} \quad \text{forward query} \quad \text{compensation query}\]

Continuous propagation process

- Choose a propagation interval length \(\delta\)
- Asynchronously compute \(V_{t,t + \delta}\)
 - May be executed after \(t + \delta\)
 - \(t \leftarrow t + \delta\)
- Repeat

\[
\delta \text{ is tunable}
\]

Apply process

- Delta timestamps
 - Assume that base table delta tuples are timestamped by transactions that update them
 - Compute timestamps for view delta tuples
 - Join returns the smallest timestamp (may sound counterintuitive, but works with compensation)
- An independent apply process can refresh the view to any time \(t\) before the current high-water mark
- Without these timestamps, the apply process can refresh the view only to a high-water mark

Example of timestamp computation

- \(V = R \triangleright a \triangleright S\)
 - Last refreshed at time \(t\); need to refresh to time \(t'\)
- At time \(a\), insert \((R, x)\); at time \(b\), insert \((S, y)\)
 - \(a < b < t'\)
- At time \(c > t'\), calculate forward query \(R_{t, t'} \triangleright S_c\)
 - Adds \(xy\) to view delta with timestamp \(a\)
- Compensate by \(R_{t, t'}, t' \triangleright S_{t', c}\)
 - Empty
- At time \(d > t'\), calculate forward query \(R_{d} \triangleright S_{d, t'}\)
 - Adds \(xy\) to view delta with timestamp \(b\)
- Compensate by \(R_{d}, t' \triangleright S_{d, t'}\)
 - Subtracts \(xy\) from view delta with timestamp \(a\)

Rolling propagation

- Flexibility: Different base tables may be updated at different rates, so allow each base table’s propagation interval to be tuned independently
- Efficiency: Do not set target refresh time for a view in advance; less compensation work

They do not initiate compensation

Complications

- Regions that require compensation may not be rectangular
 - A query always returns a rectangular region
 - So multiple compensation queries may be needed
- High-water marks are no longer determined in advance
 - The current high-water mark must be calculated as the beginning of the oldest query that has not been completely compensated
 - Prior to this point, all forward queries have been completely compensated
Implementation issues

• Detecting and timestamping base table deltas
 – Log-based approach
 – Trigger-based approach

• Determining the evaluation time of a query (or the base table state that it reads)

Log-based approach

• Used by the paper on DB2
• A tool continuously examines the database transaction log and populates base table deltas
 – Transaction ID
 – Commit sequence number (unique “timestamp”)
 – Commit timestamp (not necessarily unique)

• Advantage: does not disrupt normal database operations
• Disadvantage: needs to scan through many unnecessary log entries if we are only interested in a few base tables

Trigger-based approach

• Define a trigger on the base table that fires whenever the table is updated and populates the delta table
 – What is the timestamp then?
 • A regular trigger has no access to the commit sequence number because it is not known until commit time
 • A commit trigger (fired at commit time) is required but is not a standard DBMS feature

• Disadvantage: interferes with normal database operations

Determining query evaluation time

• We need the commit sequence number of the transaction in which a propagation query is evaluated
• But it is difficult to tell which log entries belong to this particular transaction
 ➢ Hack: make this transaction write a unique value into a special table
 ➢ These solutions are very system-dependent!

Next time

• All the continuous changing base table states give me headaches!
 ➢ Self-maintainable views—do not rely on base tables for view maintenance!