
1

View Self-Maintenance

CPS 296.1
Topics in Database Systems

2

Self-maintainable views
� A view is self-maintainable if it can be

maintained without accessing the base tables
� That is, using just the base table deltas and the old

content of the view itself

� Advantages of self-maintainable views
� Efficiency: no need to access base tables
� Simplicity: no problem with changing base table

states

3

Examples
� Self-maintainable

� V = σp R
� ∇V = σp (∇R), ∆V = σp (∆R)

� V = max(R) w.r.t. ∆R
� ∇V = V, ∆V = max(V, ∆R)

� Not self-maintainable
� V = R >< S w.r.t. insertions

� ∆V = (∆R >< S) ⊕ (R >< ∆S) ⊕ (∆R >< ∆S)
� What about deletions?

� V = max(R) w.r.t. ∇R
� If V ⊆ ∇R, then V must be recomputed as max(R)

4

Making a view self-maintainable
� If V is not self-maintainable, add a set of auxiliary

views A such that V and A taken together can
be maintained without accessing any base tables
� That is, using just the base table deltas and the old

content of V and A itself

� Example
� V = max(R) is not self-maintainable
� Add auxiliary view A = R
� V and A together are self-maintainable
� Why not just A = second_max(R)?

5

A more interesting example
� Store(store_id, city, state, manager)
� Sale(sale_id, store_id, day, month, year)
� Line(line_id, sale_id, item_id, price)
� Item(item_id, item_name, category, supplier)

� V = π manager, month, sale_id, line_id, item_id, item_name, price
σ state = �CA� AND year = 1996 AND category = �toy�
(Store ><store_id Sale ><sale_id Line ><item_id Item)

� Not self-maintainable because of joins
6

Naïve approach
� Add auxiliary views that simply copy base tables

� AStore = Store
� ASale = Sale
� ALine = Line
� AItem = Item

� Implemented by most commercial data warehouses
� Certainly correct, but very inefficient

� All copies are self-maintainable by themselves
� V is maintainable (even computable) from these copies

2

7

A smarter approach
� V = π manager, month, sale_id, line_id, item_id, item_name , price

σ state = �CA� AND year = 1996 AND category = �toy�
(Store ><store_id Sale ><sale_id Line ><item_id Item)

� Push selection/projection into auxiliary views
� AStore = π store_id, manager σ state = �CA� Store
� ASale = π sale_id, store_id, month σ year = 1996 Sale
� ALine = Line
� AItem = π item_id, item_name σ category = �toy� Item

� Correct, and less inefficient
� All select-project views are self-maintainable themselves
� V is maintainable (even computable) from these views 8

More information
� Key and foreign-key constraints
� Insert/delete/update patterns

� Append-only tables, updateable columns, etc.

� Store(store_id, city, state, manager)
� Sale(sale_id, store_id, day, month, year)
� Line(line_id, sale_id, item_id, price)
� Item(item_id, item_name, category, supplier)

� Also, columns referenced in selection/join conditions
are not updated

9

Better auxiliary views
Given the additional constraints
� AStore = π store_id, manager σ state = �CA� Store

� Same as before
� ASale = π sale_id, store_id, month σ year = 1996 Sale

><store_id AStore
� Note the extra semijoin

� AItem = π item_id, item_name σ category = �toy� Item
� Same as before

� No ALine needed
10

Why the extra semijoin?
ASale = (π sale_id, store_id, month σ year = 1996 Sale) ><store_id AStore

� Sale deltas do not need to be joined with Sale
� Line and Item deltas are always joined with Sale and

Store together
� Computable from ASale ><store_id AStore (semijoin does not hurt)

� ∆Store cannot join with existing Sale tuples
� Because every existing Sale references an existing store_id

� ∇Store cannot join with existing Sale tuples
� Because if it does, it would violate the foreign-key constraint
� If it cascades, join with ASale to find sale_id�s to delete from V

11

Why no ALine?
� Line deltas do not need to be joined with Line
� ∆Item and ∆Sale cannot join with existing Line tuples

� Because every existing Line references an existing item_id and
an existing sale_id

� ∇Item and ∇Sale cannot join with existing Line tuples
� Because if they do, they would violate the foreign-key

constraints
� If they cascade, delete from V deleted item_id�s and sale_id�s

� Store deltas cannot join with existing Line tuples
� Because they cannot even join with existing Sale tuples

12

What about updates?
� In most view maintenance literature, an update is treated

as a deletion followed by an insertion
� Approach becomes problematic if we want to exploit

foreign-key constraints

� Example: updating Store.manager
� ∇Store = [123, �Fremont�, �CA�, �Amy�]
� ∆Store = [123, �Fremont�, �CA�, �Ben�]
� Applying ∇Store and ∆Store separately would temporarily

violate the foreign-key constraint from Sale.store_id to
Store.store_id

!Must treat update as one operation

3

13

Characterizing updates
� Exposed update

� Changes the value of a column referenced in select/join
conditions of the view

� May cause insertion into or deletion from the view

� Protected update
� Not exposed, but changes the value of a column that is

included in the final projection of the view
� Causes the view column to be updated

� Ignorable update
� Neither exposed nor protected
� No effect on the view

14

Auxiliary views re-examined

� Assume no exposed updates

� For protected updates on Sale, Item, or Line, simply
update all V tuples with the affected sale_id�s, item_id�s,
or line_id�s

� For protected updates on Store, join with ASale to find all
sale_id�s associated with the updated stores, and then
update V tuples with these sale_id�s

15

What if exposed updates are allowed?
� Say Sale.year may be updated

� Must add auxiliary view
ALine = π line_id, sale_id, item_id, price Line

><item_id AItem
� Any Line can be a 1996 sale after a Sale.year update

16

Self-maintenance algorithm

� How to generate definitions for auxiliary views
� How to maintain the original view
� How to maintain the auxiliary views

� Quass et al. �Making Views Self-Maintainable for Data
Warehousing.� PDIS, 1996

17

Join graph of a view

� Node R: base table R
� Directed edge R→ S: join condition of the form

R.A = S.K, where K is a key of S
� The edge is further annotated with RI if there is a

foreign-key constraint from R.A to S.K

Line

Sale

Store

Item
RI

RI

RI

18

Dep(R)
� Dep(R) = { S | there is an edge R→ S annotated

with RI, and S has no exposed updates }
� Example

� Dep(Store) = ∅
� Dep(Sale) = { Store }
� Dep(Item) = ∅
� Dep(Line) = { Sale, Item }

Line

Sale

Store

Item
RI

RI

RI

4

19

Intuition behind Dep(R)
AR can be semijoined with AS for every S in Dep(R)

� If r in R does not semijoin with AS, then
� r must join with some existing s in S not in AS

(foreign-key constraint)
� r cannot join with ∆S (key constraint on S)
� s will never contribute to V (no exposed updates on S)
!r will never contribute to V

20

Dep+(R)
� Dep+(R) is the transitive closure of Dep(R)

� That is, Dep+(R) ← Dep(R), and
� If S is in Dep+(R), then so are tables in Dep(S)

� Example
� Dep+(Store) = ∅
� Dep+(Sale) = { Store }
� Dep+(Item) = ∅
� Dep+(Line) = { Sale, Item, Store }

Line

Sale

Store

Item
RI

RI

RI

21

Intuition behind Dep+(R)
� If Dep+(R) includes all tables in V other than R

itself, then AR is not needed for processing inserts

� Every S is reachable from R from a chain of
foreign-key joins, say R→ S1 →�→ Sk → S
� ∆S cannot join with existing Sk tuples, and therefore

cannot join with exiting Sk � 1, �, S1, and R tuples

22

Need(R)
� If the key of R is preserved in V

Need(R) = ∅
� Otherwise, if there exists S s.t. S→ R

Need(R) = { S } ∪ Need(S)
� Otherwise, Need(R) = all tables except R itself

� Example
� Need(Store) = { Sale }
� Need(Sale) = ∅
� Need(Item) = ∅
� Need(Line) = ∅

Line

Sale

Store

Item
RI

RI

RI

V = π manager, month, sale_id, line_id, item_id, item_name , price (�)

23

Intuition behind Need(R)
� If S appears in Need(R) then AS may be needed

for processing deletes and protected updates on R

� To process a delete or a protected update on R,
we need to identify V tuples that are affected by
this modification
� If R�s key is preserved in V, we know which tuples are

affected
� Otherwise, we can join the modification with AS to

find the S keys of the affected V tuples 24

Generating auxiliary views
For each R
� If Dep+(R) includes all other tables and R is not

contained in any Need(S), then AR is not needed
� Only happens for the root of the join graph

� Otherwise, push selection and projection down into AR as
much as possible, but preserve the key of R

� Semijoin AR with AS for every S in Dep(R)

!No recursive definition if join graph is a tree

5

25

Maintaining the original view
� Basic strategy: start with regular change

propagation equations, rewrite the change terms
to reference only deltas, AR�s, and/or V
� Inserts
� Deletes
� Updates (protected and exposed)

26

Strategy for inserts
� Eliminate terms that are guaranteed to be ∅

� If there is a foreign-key join from R.A to S.K, then
� >< R >< � >< ∆S >< � = ∅

� In the remaining terms, replace R�s with AR�s
� Rewrite � >< R >< � >< S >< � as

� >< AR >< � >< AS >< �
� Note that in the remaining terms, R always appears

together with S, so the semijoin with AS is harmless

27

Strategy for deletes
� Rewrite terms to reference V whenever possible

� If key(R) is preserved in V, then
� >< ∇R >< � = V ><key(R) ∇R

� If key(R) is not preserved in V, but there is a chain
join S1 → S2 →�→ Sk → R, and key(S1) is
preserved in V, then
� >< ∇R >< � = V ><key(S1)

(AS1
><key(S2)

(AS2
><key(S3) (�

(ASk
><key(R) ∇R) �)))

28

Strategy for updates
� Protected updates

� Similar to deletes
� Rewrite using V, using additional joins as necessary to

recover preserved keys
� Exposed updates

� Treated as deletes followed by inserts
� Cannot exploit foreign-key constraints

29

Maintaining auxiliary views
� Insertion

� ∆AR = (π σ∆R) >< � >< AS >< �
� Since S is in Dep(R), ∆S has no effect on AR

� Deletion
� ∇AR = AR >< ∇R
� ∇AR = AR >< ∇AS

� AR preserves the key of R and the foreign key reference to S
� Protected updates

� For a protected update on R, just update AR because AR
preserves the key

� Protected updates on S do not affect AR 30

Recap
� Bottom line: use constraints to simplify view

maintenance
� Start with change propagation equations
� Using constraints, simplify equations or rewrite them

to reference the view itself
� Examine remaining terms and see if tables can be

joined to form auxiliary views
� Joins (or semijoins) serve as additional filters

� Don�t forget to check that auxiliary views themselves
are self-maintainable!

6

31

Compile- vs. run-time self-maintenance

� Compile-time self-maintenance (this paper)
� Views are always self-maintainable, no matter what

the current database state is and what changes may
occur in the future

� Strong guarantee, but large auxiliary views
� Run-time self-maintenance

� Look at each change and the current view content,
decide whether it is possible to self-maintain the view

� Example: V = max(R)
� Example: most updates are protected, but some are exposed

� Base tables are accessed only when necessary

