Selecting Views to Materialize

CPS 296.1
Topics in Database Systems

Data cube and OLAP

• Example data cube schema:
 Sale(store, product, customer, quantity)
 – Store, product, customer are dimension attributes

• Example OLAP query:
 SELECT product, store, SUM(quantity)
 FROM Sale
 GROUP BY product, store;
 – Lots of summarization
 – Cost of aggregation dominates
 ➢ Materialize aggregates to improve query performance

Aggregation view lattice

“A parent can be computed from any child

“A roll up” for more summarized data

Selecting views to materialize

• Factors in deciding what view to materialize
 – What is its storage/update cost?
 – Which queries can benefit from it, and how much?

• Trade-off
 – GROUP BY ∅ is small, but not useful to most queries
 – GROUP BY store, product, customer is useful to most queries, but too large to be beneficial

➢ Harinarayan et al. “Implementing Data Cubes Efficiently.”
SIGMOD, 1996

Limitations of static approach

• Previous work assumes fixed workloads
• But things change overtime
 – User interests (queries)
 – Data characteristics
 – Space/time constraints
• Periodic re-calibration is necessary
• Questionable performance guarantees

DynaMat

• Dynamically select views to materialize
Space and time bounds

- Pool size increases between updates
- Space bound: new query results compete with cached results for the limited space
- Time bound: results are evicted from the pool because of limited update window

Space- and time-bound cases

- Time-bound case: not enough time to update all materialized results
- Space-bound case: not enough space to materialize all query results

Range query in data cube

- Query:
 SELECT product, store,
 SUM(quantity)
 FROM Sale
 WHERE product = 50
 GROUP BY product, store;
- Lattice node:
 SELECT product, store,
 SUM(quantity)
 FROM Sale
 GROUP BY product, store;

What should get materialized?

- Selecting the logical unit of materialization is important
 - Operational overhead should be minimum (lookup and maintenance)
 - Query performance should not be compromised
- Example: arbitrary range fragments
 - May result in too many small fragments
 - Re-using fragments gets complicated (overlap, holes)
 - Maintenance is difficult

MRF

- Multidimensional Range Fragments (MRF’s)
 - Ranges are either fully open or a single value
 - Easier to handle than arbitrary range fragments

Directory index

- One R-tree for each view in the lattice
 - One index entry for each MRF of this view
 - MRF description
 - Statistics (e.g., number of accesses, creation time, last access time, etc.)
 - Pointer to a father (another MRF from which this MRF can be computed)
Answering query using MRF’s (slide 1)

- Given a query \(q \), check the R-tree index for the corresponding lattice view
- Example
 - \(q = \{ \text{product: } (-\infty, +\infty), \text{store: } (), \text{customer: } \text{Smith} \} \)
 - Check GROUP BY product, customer
 - MRF \{ product: 50, store: (), customer: Smith \}
 - Does not cover \(q \)
 - MRF \{ product: \(-\infty, +\infty\), store: (), customer: Smith \}
 - Covers \(q \); exact match
 - Needs additional filter to answer \(q \); not considered by the paper

Answering query using MRF’s (slide 2)

- If no MRF’s were found, check the R-tree indexes for more detailed lattice views
- Example
 - \(q = \{ \text{product: } (-\infty, +\infty), \text{store: } (), \text{customer: } \text{Smith} \} \)
 - Check GROUP BY product, store, customer
 - MRF \{ product: \(-\infty, +\infty\), store: 10, customer: Smith \}
 - Does not cover \(q \)
 - MRF \{ product: \(-\infty, +\infty\), store: \(-\infty, +\infty\), customer: Smith \}
 - Covers \(q \); needs additional aggregation

Answering query using MRF’s (slide 3)

- If an MRF \(f \) matches \(q \) exactly, return the content of \(f \) directly
- If no exact match exists, pick the best MRF \(f \) to answer \(q \) according to some cost model
 - \(f \) is the father of \(q \)
- If no MRF can answer \(q \), compute \(q \) from base tables at the warehouse
- Result of \(q \) may be materialized as an MRF

Goodness of MRF’s

- LRU (Least Recently Used)
 - \(\text{goodness}(f) = \text{last_access_time}(f) \)
- LFU (Least Frequently Used)
 - \(\text{goodness}(f) = \text{access_frequency}(f) \)
- SFF (Smaller Fragment First)
 - \(\text{goodness}(f) = \text{size}(f) \)
 - Larger MRF’s are more likely to be hit by a query
 - Larger MRF’s imply fewer MRF’s to manage
- SPF (Smaller Penalty First)
 - \(\text{goodness}(f) = \text{access_frequency}(f) \cdot \text{cost}(f) / \text{size}(f) \)
 - \(\text{cost}(f) \) is estimated as the cost of computing \(f \) from its parent

View management

- Query time
 - If there is not enough space to materialize the new result, evict MRF’s with lowest goodness
- Update time
 - For each MRF \(f \) compute minimum update cost \(UC(f) \)
 - Re-compute \(f \) from its father, or
 - Incrementally maintain \(f \) using base table deltas
 - If there is not enough time to update all MRF’s, evict some MRF’s
 - Which ones? How about ones with lowest goodness?

Time-bound update plan

- Compute reduction in update cost after evicting \(f \): \(U_{\text{delta}}(f) \)
 - Heuristic: forward father pointers of orphans
 - Example: \(U_{\text{delta}}(f) = 100 - ((50–20) + (45–20)) = 45 \)
 - Evict \(f \) with \(U_{\text{delta}}(f) > 0 \) based on goodness

Goodness of MRF’s

- LRU (Least Recently Used)
 - \(\text{goodness}(f) = \text{last_access_time}(f) \)
- LFU (Least Frequently Used)
 - \(\text{goodness}(f) = \text{access_frequency}(f) \)
- SFF (Smaller Fragment First)
 - \(\text{goodness}(f) = \text{size}(f) \)
 - Larger MRF’s are more likely to be hit by a query
 - Larger MRF’s imply fewer MRF’s to manage
- SPF (Smaller Penalty First)
 - \(\text{goodness}(f) = \text{access_frequency}(f) \cdot \text{cost}(f) / \text{size}(f) \)
 - \(\text{cost}(f) \) is estimated as the cost of computing \(f \) from its parent

View management

- Query time
 - If there is not enough space to materialize the new result, evict MRF’s with lowest goodness
- Update time
 - For each MRF \(f \) compute minimum update cost \(UC(f) \)
 - Re-compute \(f \) from its father, or
 - Incrementally maintain \(f \) using base table deltas
 - If there is not enough time to update all MRF’s, evict some MRF’s
 - Which ones? How about ones with lowest goodness?

Time-bound update plan

- Compute reduction in update cost after evicting \(f \): \(U_{\text{delta}}(f) \)
 - Heuristic: forward father pointers of orphans
 - Example: \(U_{\text{delta}}(f) = 100 - ((50–20) + (45–20)) = 45 \)
 - Evict \(f \) with \(U_{\text{delta}}(f) > 0 \) based on goodness
Performance metrics (slide 1)

• Hit ratio = \(\frac{\sum_i h_i}{\sum_i r_i} \)
 – \(r_i \) is the number of times that \(q_i \) is run
 – \(h_i \) is the number of times that \(q_i \) is satisfied in cache
 – But the cost of a miss varies widely!

• Cost saving ratio = \(\frac{\sum_i c_i h_i}{\sum_i c_i r_i} \)
 – \(c_i \) is the cost of executing \(q_i \) without cache
 – But the cost of a hit also varies widely!
 • Exact match; compute from fathers…

Performance metrics (slide 2)

• Detailed cost saving ratio = \(\frac{\sum_i s_i}{\sum_i c_i} \)
 – \(s_i \) is the cost saving for \(q_i \)
 – \(s_i = 0 \) if \(q_i \) cannot be answered by the view pool
 – \(s_i = c_i \) if there is an exact match for \(q_i \) in the pool
 – \(s_i = c_i - c_f \) if \(f \) is used to answer \(q_i \)

➢ Sloppy notation: each occurrence of a query should get a different \(i \)

Experiments

• Synthetic query load
 – Uniform queries on lattice views
 – 80-20 law for values

• Space bound: 2% of the size of the warehouse

• Time bound: 2% of the time to update the full warehouse

Comparing goodness policies (slide 1)

• SPF > LFU > LRU > SSF

• Saving increases quickly as the view pool warms up
 – Quite substantial for just 2% extra space and time

Comparing good policies (slide 2)

• Savings eventually flatten out

DynaMat vs. optimal static view selection (slide 1)

• Calculated “optimal” static view selection
 – Calculation took 3 days!
 – Time bound: 2% of the warehouse update time
 – Only full lattice views are selected (no fragments)

• DynaMat
 – Same time bound
 – Space bound is set to the size of the optimal view collection

• Same overall performance
DynaMat vs. optimal static view selection (slide 2)

- Optimal static selection “ignores” many views altogether
- DynaMat provides savings for almost all views

DynaMat vs. optimal static view selection (slide 3)

- Optimal static selection cannot make use of extra space
 - Why?
- DynaMat increases savings because of extra space
 - Intuition?

DynaMat vs. optimal static view selection (slide 4)

- DynaMat also outperforms static view selection in cases of
 - Skewed workloads
 - Example: queries gradually increase the number of GROUP BY columns
 - Roll-up/drill-down workloads
 - Typically OLAP queries tend to be followed by roll-up/drill-down queries on the same data
 - Roll-up queries can be compute from the result of the original query

Conclusion

- Dynamic/adaptive algorithms work surprising well in practice, despite their simplicity
- Simplicity is actually necessary in this case to keep the run-time overhead low
 - Give up arbitrary range fragments
 - Give up multiple father pointers
 - …
- ➢ Self-tuning and self-administering DBMS