
1

Answering Queries Using Views:
Introduction and

Cost-Based Approaches

CPS 296.1
Topics in Database Systems

2

Introduction
� Given a query Q and a set of views V

� Is it possible to answer Q using only the views in V?
� If not, what is the maximal set of tuples in the answer of Q that

we can obtain from the views in V?
� If we can access both the views and base tables, what is the

cheapest query execution plan for answering Q?

� Applications in query optimization, database design, data
integration, data warehouse design, semantic data
caching, �

! Halevy. �Answering Queries Using Views: A Survey.� VLDB Journal, 2001

3

Query optimization example (slide 1)

� Schema
� Prof(name, area)
� Course(c-number, title)
� Teaches(prof, c-number, quarter)
� Registered(student, c-number, quarter)

4

Query optimization example (slide 2)

� Query: my 3xx courses and students in them
Q := select Course.title, Registered.student

from Teaches, Course, Registered
where Teaches.prof = ’Jun’
and Teaches.c-number = Course.c-number
and Teaches.c-number = Registered.c-number
and Teaches.c-number >= 300;

� Materialized view: graduate courses and students in them
Grad := select Course.c-number, Course.title, Registered.student

from Course, Registered
where Course.c-number = Registered.c-number
and Course.c-number >= 200;

� Faster to answer the query using the materialized view
Q = select Grad.title, Grad.student

from Teaches, Grad
where Teaches.prof = ’Jun’
and Teaches.c-number = Grad.c-number
and Teaches.c-number >= 300;

5

Data integration example (slide 1)

� Global schema
� Teaches(prof, c-number, quarter, univ)
� Course(c-number, title, univ)

� Source contents described as views
DB-Courses := select Course.title, Teaches.prof, Course.c-number, Course.univ

from Teaches, Course
where Teaches.c-number = Course.c-number
and Teaches.univ = Course.univ
and Course.title = ’Database Systems’;

Duke-Grad := select Course.title, Teaches.prof, Course.c-number, Course.univ
from Teaches, Course
where Teaches.c-number = Course.c-number
and Teaches.univ = Course.univ
and Course.univ = ’Duke’
and Course.c-number >= 200;

!Local-as-view approach (versus global-as-view) 6

Data integration example (slide 2)

� Query: �Database Systems� course at Duke
� Complete answer at source DB-Courses

select * from DB-Courses where univ = ’Duke’;

� Incomplete answer at source Duke-Grad
select * from Duke-Grad where title = ’Database Systems’;

� Query: all profs at Duke
� Incomplete answer at both DB-Courses and Duke-Grad

select prof from DB-Courses where univ = ’Duke’;
select prof from Duke-Grad;

� The best we can do is to union the two answers

2

7

Other applications
� Access path/index selection

� Access paths and indexes = materialized views with
binding patterns

� Data warehousing
� Warehouse data = materialized views

� Semantic data caching
� Cached data = materialized views

!Use materialized views to improve query
performance

8

Containment and equivalence
� Containment: Q1 contains Q2 if for all database

instance, the result of Q1 contains the result of Q2

� Equivalence: Q1 is equivalent to Q2 if Q1 contains
Q2 and Q2 contains Q1

!Important: �for all database instance�
� R = { (1), (2), (3) }
� Q1 = σ A > 1 R and Q2 = σ A < 3 R return the same result
� But Q1 and Q2 are not equivalent in general

9

Equivalent and maximal rewritings
� Given a query Q and a set of views V
� Q� is an equivalent rewriting of Q using V if

� Q� refers only to the views in V, and
� Q� is equivalent to Q

� Q� is a maximally-contained rewriting of Q using V
(w.r.t. some query language) if
� Q� refers only to the views in V, and
� Q� is contained in Q, and
� There is no Q�� (written in the same query language) such that

Q�� is contained in Q and Q� is strictly contained in Q��
� That is, Q� is (one of) the best we can do with a given language
� There may be multiple maximally-contained rewritings

10

Finding maximal rewriting�
� Source 1: list all SIGMOD papers
� Source 2: given a paper, list all papers cited by it
� Source 3: given a paper, return its rating (1-10)

� Sources 2 and 3 are views with binding patterns

� Query: find all papers with rating higher than 9

11

� is not easy
� From Source 1, find all SIGMOD papers
� From Source 2, find all papers cited by SIGMOD papers
� From Source 2, find all papers cited by (papers cited by

SIGMOD papers)
� From Source 2, find all papers cited by (papers cited by

(papers cited by SIGMOD papers))
� �
� Repeat until no more papers can be found
� From Source 3, determine which papers have rating

higher than 8
12

Certain answers
� Maximally-contained rewriting depends on the

expressive power of the query language
� What is the best we can do (regardless of the

query language)?
� Find all certain answers of a query using views

� Tuple t is a certain answer to Q if t is in the result
of Q for any database instance that is �consistent�
with the given view contents

3

13

Closed- vs. open-world assumption
� Closed-world assumption: Views contain

complete answers
� Open-world assumption: Views may contain

incomplete answers
� Example: R(A, B), V1 = πA R, V2 = πB R, Q = R

� Suppose V1 contains a single tuple (a), and V2
contains a single tuple (b)

� Under closed-world assumption, (a, b) is a certain
answer to Q

� Under open-world assumption, (a, b) is not certain 14

Approaches to
answering queries using views

� Cost-based rewriting
� Query optimization, access path selection, data

warehousing, semantic caching
� Focuses on finding an efficient execution plan for an

equivalent rewriting
� Often uses SQL, relational/bag algebra

� Logical rewriting
� Data integration
� Focuses on finding a maximally-contained rewriting,

or as many certain answers as possible
� Often uses Datalog (a Prolog-like query language)

15

Roadmap

!Cost-based rewriting for SQL query optimization
� Basic question: When is a view usable for a query?
� Transformational approach
� Selinger-style (System-R) approach

� Logical rewriting for data integration using
Datalog

16

When is a view usable for a query (slide 1)

� Each occurrence of a table in V must be matched with an
occurrence of the same table in Q

Advises(prof, student)
Teaches(prof, c-number, quarter)
Registered(student, c-number, quarter)

Q: select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Advises.prof = Teaches.prof
and Advises.student = Registered.student
and Registered.quarter >= ’win98’;

V: select Registered.student, Teaches.prof, Registered.quarter
from Registered, Teaches
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Registered.quarter >= ’win97’;

17

When is a view usable for a query (slide 2)

� Intuition: If a table is joined in V but not in Q, then V is
unusable because the additional join may filter out some
V tuples that could contribute to Q

Q: select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Advises.prof = Teaches.prof
and Advises.student = Registered.student
and Registered.quarter >= ’win98’;

V’: select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises, Area
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Advises.prof = Teaches.prof
and Advises.student = Registered.student
and Registered.quarter >= ’win98’
and Teaches.prof = Area.prof;

18

When is a view usable for a query (slide 3)

� V must either apply the join and selection predicates in Q, or apply
a logically weaker predicate (or not applying it at all) and preserve
the attributes on which the predicates still need to be applied
(unless these attributes can be recovered somehow)

Q: select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Advises.prof = Teaches.prof
and Advises.student = Registered.student
and Registered.quarter >= ’win98’;

V: select Registered.student, Teaches.prof, Registered.quarter
from Registered, Teaches
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Registered.quarter >= ’win97’;

4

19

When is a view usable for a query (slide 4)

� Intuition: A stronger predicate may filter out some V
tuples that could contribute to Q; a weaker predicate
means the original predicate must be re-applied (so
attributes must be preserved)

Q: select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Advises.prof = Teaches.prof
and Advises.student = Registered.student
and Registered.quarter >= ’win98’;

V’’: select Registered.student, Teaches.prof
from Registered, Teaches
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Registered.quarter >= ’win99’; 20

When is a view usable for a query (slide 5)

� V must not project out attributes that are selected by Q
(unless they can be recovered somehow)

Q: select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Advises.prof = Teaches.prof
and Advises.student = Registered.student
and Registered.quarter >= ’win98’;

V: select Registered.student, Teaches.prof, Registered.quarter
from Registered, Teaches
where Registered.c-number = Teaches.c-number
and Registered.quarter = Teaches.quarter
and Registered.quarter >= ’win97’;

21

Transformational query optimizer
� Start with a query execution plan P
� Repeat until some stopping condition (e.g., time

runs out):
� Apply a random transformation to P
� Hopefully, the cost of P decreases after the

transformation (but this is not necessary for some
algorithms)

!Usual tricks for searching apply: iterative
improvement, simulated annealing, etc. 22

Transformational optimization using views

� Add a transformation that rewrites the query to
use a view
� Sometimes an entire subplan can be replaced by a

view exactly, but sometimes additional processing is
needed to use the view correctly

� Special indexing structures are often used to help
determine which views are relevant to the query

� Remember the directory index in DynaMat?

!Easy to incorporate into an existing optimizer
� Implemented in SQL Server, DB2, Oracle

23

Selinger-style query optimizer
Basic ideas
� Bottom-up generation of plans

� An n-way join plan can be constructed by joining a k-
way join plan with an (n � k)-way join plan

� Pruning of plans
� A plan is pruned if its cost is higher than another plan

that joins the same set of table and produces the
answers in the same or a more �interesting� order

24

Selinger-style query optimization
� Pass 1: Find all single-table plans; prune
� Pass 2: Find 2-way join plans by joining the best

single-table plans (found in Pass 1); prune
� �
� Pass n: Find n-way join plans by joining the best

k-table plans (found in Pass k) with the best (n �
k)-table plans (found in Pass n � k); prune
� If the query has only n tables, stop

� �

5

25

Example
V1 (students and their majors):

π student, dept Major
V2 (students in theory courses):

π student, c-number σ title like �%theory%�
(Registered >< c-number Course)

V3 (majors of students in 3xx courses):
π dept, c-number σ c-number >= 300

(Registered >< student Major)
Q (students and their majors in 3xx theory courses):

π student, dept σ c-number >= 500 and title like �%theory%�
(Course >< c-number Registered >< student Major) 26

Partial and complete plans
� Complete plans return the final result of the query
� Partial plans still need additional processing
� Example plans for Q

� Partial: V1 >< student V2

� Complete: π student, dept σ c-number >= 500 (V1 >< student V2)
� Partial: V3 >< c-number V2

� Complete: π student, dept(V3 ><c-numberV2 >< student, dept V1)
� Seems redundant, but may in fact be a winning plan

27

Selinger-style optimization using views (slide 1)

� Bottom-up generation of plans
� Partial plans can be combined to form bigger ones
� Partial plans can be patched with additional selection

and projection to obtain complete ones
� Complete plans should not need to be combined

� Pruning of plans
� A plan is pruned if its cost is higher than another plan

that has greater or equal contribution to the query
(e.g., covers more joins in the query)

� Termination testing
� No more partial plans left unexplored 28

Selinger-style optimization using views (slide 2)

� Pass 1
� Find all views relevant to the query
� Distinguish between partial and complete plans
� Prune

� �
� Pass n

� Consider joining the best partial plans found in previous passes
� Distinguish between partial and complete plans
� Prune
� If there are no partial plans left to explore, stop

� �

