Introduction to Datalog and Query Containment

CPS 296.1
Topics in Database Systems

Datalog

• A Prolog-like query language
• Declarative
 – A query specifies what the result should be (using logic) rather than how to compute it (using algebraic operators)
• Expressive
 – Supports recursion
 – Without recursion but with negation it is equivalent in power to relational algebra
• Has affected real practice (e.g., recursion in SQL3, magic transformation)

Conjunctive queries (CQ’s)

• Most common form of query; equivalent to select-project-join queries
• Datalog rule:
 \[q(X) :- p_1(X_1), p_2(X_2), \ldots, p_n(X_n) \]
 – \(q(X) \) is called the head
 – \(p_i(X_i) \)'s are called the subgoals
 – Predicates \(p_i \)'s represent database relations
 – Tuples \(X, X_1, \ldots, X_n \) contain either variables or constants
 – The rule must be safe; that is, every variable that appears in the head must also appear in the body

CQ examples

• Database schema: parent(parent, child)
• CQ’s
 – parent-of-bart(\(X \)) :- parent(\(X \), “Bart”)
 – Equivalent to relational algebra query:
 \[\pi_{\text{parent}} \sigma_{\text{child=“Bart”}} \text{parent} \]
 – grandparent(\(X, Y \)) :- parent(\(X \), \(Z \)), parent(\(Z \), \(Y \))
 – Equivalent to relational algebra query:
 \[\pi_{p_1.\text{parent}, p_2.\text{child}} \rho_{p_1.\text{parent}=p_2.\text{parent}} \text{parent} \]
• Unsafe query
 – unsafe-query(\(X, Y \)) :- parent(\(X \), \(Z \))
 – Where would we get the value of \(Y \) in the query result?

Evaluating CQ’s

• Substitute constants for variables in the body of \(Q \) such that all subgoals becomes true
 – Result contains the head under the same substitution
• Example
 – grandparent(\(X, Y \)) :- parent(\(X, Z \), parent(\(Z, Y \))
 – Only substitutions that make both subgoals true
 • \(X \rightarrow “Abe” \); \(Z \rightarrow “Homer” \); \(Y \rightarrow “Bart” \)
 • \(X \rightarrow “Abe” \); \(Z \rightarrow “Homer” \); \(Y \rightarrow “Lisa” \)
 – These substitutions yield heads grandparent(“Abe”, “Bart”) and grandparent(“Abe”, “Lisa”), which are the result tuples

Example of CQ containment

• \(Q_1: p(X, Y) :- r(X, W_1), b(W, Z), r(Z, Y) \)
• \(Q_2: p(X, Y) :- r(X, W_1), b(W, W), r(W, Y) \)
• Claim: \(Q_1 \) contains \(Q_2 \)
• Proof
 – If \(p(x, y) \) is in \(Q_2 \), then there is some \(w \) such that \(r(x, w) \), \(b(w, w) \), and \(r(w, y) \) are true
 – For \(Q_1 \), make the substitution \(X \rightarrow x \); \(Y \rightarrow y \); \(W_1 \rightarrow w \); \(Z \rightarrow w \)
 – All subgoals of \(Q_1 \) are true, and the head of \(Q_1 \) becomes \(p(x, y) \)
 – Thus, \(p(x, y) \) is also in \(Q_1 \), proving that \(Q_1 \) contains \(Q_2 \)
Containment mappings

• A containment mapping is a mapping from variables of CQ Q_1 to variables for CQ Q_2, s.t.
 – Head of Q_1 becomes head of Q_2
 – Each subgoal of Q_1 becomes some subgoal of Q_2
 • It is not necessary that every subgoal of Q_2 is the target of some subgoal of Q_1

Containment mapping examples

• Q_1: $p(X, Y) \rightarrow r(X, W), b(W, Z), r(Z, Y)$
 • Containment mapping from Q_1 to Q_2:
 $X \rightarrow X; Y \rightarrow Y; W \rightarrow W; Z \rightarrow W$
 – No containment mapping from Q_1 to Q_2
 • W cannot be mapped correctly

• Q_2: $p(X, Y) \rightarrow r(X, W), b(W, Z), r(Z, W)$
 – Containment mapping from Q_1 to Q_2:
 $X \rightarrow X; Y \rightarrow Y; Z \rightarrow Z; W \rightarrow W$
 – No containment mapping from Q_1 to Q_2
 • X cannot be mapped correctly

Containment mapping theorem

• Q_1 contains Q_2 if and only if there exists a containment mapping from Q_1 to Q_2

• Some intuition
 – Given the containment mapping, and a substitution that proves $t \in Q_2$, we can construct a substitution to prove $t \in Q_1$
 – Q_1 may have more answers than Q_2 because Q_2 may have additional subgoals that further restrict its answers

Justification for “if”

• Let μ: $Q_1 \rightarrow Q_2$ be a containment mapping
• Let D be any database state
• Every tuple t in $Q_2(D)$ is produced by some substitution σ on the variables of Q_2 that makes Q_1’s subgoals all become facts in D
• Claim: $\sigma \circ \mu$ is a substitution for variables of Q_1 that produces t
 – $\sigma \circ \mu$ (a subgoal of Q_1) σ (some subgoal of Q_2); therefore, it is supported by D
 – $\sigma \circ \mu$ (head of Q_1) σ (head of Q_2) t
 ➢ So t is in $Q_1(D)$ as well

Justification for “only if” (slide 1)

• Key idea: “frozen” CQ
 – Create a unique constant for each variable in Q
 – Frozen Q is a database consisting of just the subgoals of Q, with the chosen constants substituted for variables
• Example: Q_1: $p(X, Y) : r(X, Y), r(Y, Z), r(Z, W)$
 – $X \rightarrow x; Y \rightarrow y; Z \rightarrow z; W \rightarrow w$
 – Frozen Q_1 contains three facts $r(x, y), r(y, z), r(z, w)$

Justification for “only if” (slide 2)

• Suppose Q_1 contains Q_2
• Let database D be the frozen Q_2
• $Q_2(D)$ contains t, the frozen head of Q_2
• So $Q_2(D)$ must also contain t
• Let σ be the substitution of constants from D for the variables of Q_1 that makes each subgoal of Q_1 a fact in D and yields t as the head
• Let t be the mapping that maps constants of D to their unique, corresponding variable of Q_2 (the inverse mapping is used in constructing frozen Q_2)
• Claim: $t \circ \sigma$ is a containment mapping from Q_1 to Q_2
Justification for “only if” (slide 3)

• \(\tau \circ \sigma \) is a containment mapping from \(Q_1 \) to \(Q_2 \)

 - The head of \(Q_1 \) is mapped by \(\sigma \) to \(t \), and \(t \) is the frozen head of \(Q_2 \), so \(\tau \circ \sigma \) maps the head of \(Q_1 \) to the “unfrozen” \(t \), that is, the head of \(Q_1 \)
 - Each subgoal \(g_i \) of \(Q_1 \) is mapped by \(\sigma \) to some fact in \(D \), which is a frozen version of some subgoal \(g_j \) of \(Q_2 \); therefore, \(\tau \circ \sigma \) maps \(g_i \) to the “unfrozen” fact, that is, to \(g_j \) itself

Dual view of containment mappings

• A containment mapping, defined as a mapping on variables, induces a mapping on subgoals
 - We can alternatively define a containment mapping as a function on subgoals, thus inducing a mapping on variables
 - New containment mapping condition
 - The subgoal mapping does not cause a variable to be mapped to two different variables or constants, nor cause a constant to be mapped to a variable or a constant other than itself

Example of subgoal mapping

• Same example
 - \(Q_1 \): \(p(X, Y) :- r(X, W), b(W, Z), r(Z, Y) \)
 - \(Q_2 \): \(p(X, Y) :- r(X, W), b(W, W), r(W, Y) \)
 - Containment mapping on variables from \(Q_1 \) to \(Q_2 \):
 \(X \rightarrow X; Y \rightarrow Y; W \rightarrow W; Z \rightarrow W \)
 - Containment mapping on subgoals from \(Q_1 \) to \(Q_2 \):
 \(1 \rightarrow 1 (r(X, W) \rightarrow r(X, W)) ;
 2 \rightarrow 2 (b(W, Z) \rightarrow b(W, W)) ;
 3 \rightarrow 3 (r(Z, Y) \rightarrow r(W, Y)) \)

Canonical databases

• Instead of looking for a containment mapping to test if \(Q_1 \) contains \(Q_2 \), apply the following test
 - Create a canonical database \(D \) that is the frozen body of \(Q_2 \)
 - Compute \(Q_1(D) \)
 - If \(Q_1(D) \) contains the frozen head of \(Q_2 \), then \(Q_1 \) contains \(Q_2 \); else not

Example of using canonical database

• \(Q_1 \): \(p(X) :- r(X, Y), r(Y, Z), r(Z, W) \)
• \(Q_2 \): \(p(X) :- r(X, Y), r(Y, X) \)

• Here is the test for whether \(Q_1 \) contains \(Q_2 \)
 - Choose constants \(X \rightarrow 0; Y \rightarrow 1 \)
 - Canonical database from \(Q_2 \) is \(D = \{ p(0), 1 \} \)
 - \(Q_1(D) = \{ p(0) \} \)
 - Since the frozen head of \(Q_2 \) is in \(Q_1(D) \), \(Q_1 \) contains \(Q_2 \)
 - Note that the instantiation of \(Q_1 \) that shows \(p(0) \) in \(Q_1(D) \) is \(X \rightarrow 0; Y \rightarrow 1; Z \rightarrow 0; W \rightarrow 1 \)
 - If we map 0 and 1 back to \(X \) and \(Y \) we get a containment mapping!

Built-in predicates

• \(Q_1 \): \(p(X, Y) :- r(X, Y), s(U, V), U <= V \)
• \(Q_2 \): \(p(X, Y) :- r(X, Y), s(U, V), s(V, U) \)
• \(Q_1 \) contains \(Q_2 \), but obviously there is no containment mapping (“<=” does not map to any subgoal in \(Q_2 \))
 - Instead, we need to consider a set of canonical databases, each of which has a complete ordering on the constants in the database
Results on query containment

- CQ’s: containment mapping or canonical databases
 - NP-complete, but not “hard” in practical situations (short queries, few pairs of subgoals with same predicate)
- Unions of CQ’s: same
 - Interesting result: A CQ is contained in a union of CQ’s iff this CQ is contained in some CQ in the union
- Built-in predicates: canonical databases
- Equivalence of Datalog queries: undecidable
 ➢ Many, many results in between…

Recursion in Datalog

- A predicate p in a Datalog program is said to depend on a predicate q if q appears in a rule whose head is p
- A Datalog program is recursive if there is a cycle of dependency
 ➢ Example
 - ancestor(X, Y) :- parent(X, Y)
 - ancestor(X, Z) :- ancestor(X, Y), parent(Y, Z)
 - “ancestor” depends on parent and itself; recursive

Meaning of recursive queries

- Start with the known facts in the database
- Apply the rules in the program in arbitrary order
- An application of a rule may derive new facts
- Repeat until no more facts can be derived
 ➢ Things get much hairier when we mix recursion with negation

Further reading