
1

Answering Queries Using Views:
Logic-Based Approach

CPS 296.1
Topics in Database Systems

2

Logic-based approach
� Often used in data integration
� Focuses on finding as many answers as possible
� Bucket-based algorithms

� Levy et al. �Querying Heterogeneous Information Sources 
Using Source Descriptions.� VLDB, 1996

� Pottinger and Levy. �A Scalable Algorithm for Answering 
Queries Using Views.� VLDB, 2000

� Mitra. �An Algorithm for Answering Queries Efficiently Using 
Views.� ADBC, 2001

� Inverse-rules algorithm
� Duschka et al. �Recursive Query Plans for Data Integration.� 

Journal of Logic Programming, 2000

3

Brute-force algorithm
� Q: a CQ to be answered
� V1, V2, �: views (also defined as CQ�s)
� To find a rewriting of Q using Vi�s

� Try each possible join of Vi�s as a rewriting for Q
� Expand all Vi�s in the join (that is, replace each Vi by 

its definition)
� Test if the expansion (also a CQ) is contained in Q
� Q is rewritten as a union of these rewritings

!Too many possibilities to explore
4

Expanding a rewriting
� Example

� View: grandparent(X, Z) :- parent(X, Y), parent(Y, Z)
� Rewriting of a query: g-g-g-grandparent(X, Z) :

grandparent(X, Y), grandparent(Y, Z)
� Expansion: g-g-g-grandparent(X, Z) :-

parent(X, Y1), parent(Y1, Y),
parent(Y, Y2), parent(Y2, Z)

� Watch the use of variables
� Use the query variables for the head of the views
� Make sure variables �local� to different views do not 

clash with each other

5

Bucket algorithm
� Remember there should be a containing mapping from Q

to a rewriting (with views expanded)
� Each subgoal of Q must be covered by some view in the 

rewriting; that is, the query subgoal must map to some subgoal 
in some view

� A distinguished variable (one that appears in the head of a rule) 
in Q must map to a distinguished variable in some view

� For a shared variable X (one that appears more than once in the 
body of a rule; i.e., needed for join) in Q, either

� X maps to a distinguished variable in some view, or
� All query subgoals involving X map to subgoals of a single view

6

Examples (slide 1)

� A is not distinguished, and not shared
� A can map to Z in the expansion of V (not distinguished)

� B is not distinguished, but shared
� Given the A mapping, B should map to Y in V (distinguished)
� Other occurrences of B can map to distinguished variables in 

some other view (say Y in V�)

Rewriting � V(X, Y) � V�(�, Y, �)

Expansion p(X, W), q(W, Z), r(Z, Y) � Y �

Query Q(D, E) :- � r(A, B) � s(B, C)



2

7

Examples (slide 2)

� A is not distinguished, and not shared
� A can map to W in the expansion of V (not distinguished)

� B is not distinguished, but shared
� Given the A mapping, B is forced to Z (not distinguished)
� The other occurrence of B now has no place to go!

� V has no s subgoal
� Another view expansion would not have Z as a variable

Rewriting � V(X, Y) �

Expansion p(X, W), q(W, Z), r(Z, Y) �

Query Q(D, E) :- � q(A, B) � s(B, C)

?

8

Examples (slide 3)

� A is not distinguished, and not shared
� A can map to W in the expansion of V (not distinguished)

� B is not distinguished, but shared
� Given the A mapping, B is forced to Z (not distinguished)
� This mapping also happens to work out for the other 

occurrence of B
� So B is completely �covered� by V

Rewriting � V(X, Y) �

Expansion p(X, W), q(W, Z), r(Z, Y) �

Query Q(D, E) :- � q(A, B) � r(B, C)

9

Examples (slide 4)

� A is distinguished
� Then A must map to a distinguished variable in a view 

expansion
� Otherwise the target variable cannot appear in the 

head of the rewriting

Rewriting Q�(X, U) :- � V(X, Y) �

Expansion � p(X, W), q(W, Z), r(Z, Y) �

Query Q(A, D) :- � p(A, B) � q(B, C)

10

Buckets (slide 1)

One bucket for each subgoal p(A1, �, An) of Q
� For each view V, check each subgoal of the form 

p(X1, �, Xn) in V
� Put this view subgoal into the bucket if

� There is a mapping from A1, �, An to X1, �, Xn (the 
only reason there might not be is if there were 
duplicate occurrences among the Ai�s)

� If Ai is distinguished or shared in Q, then Xi is 
distinguished in V
!Intuition: V covers this query subgoal

11

Buckets (slide 2)

One bucket for each shared variable B in Q
� Let GG, B be the set of subgoals in Q containing B
� For each view V, check each possible subset GV

of the subgoals in V such that there is a 
containment mapping from GG, B to GV

!Intuition: V covers all query subgoals containing B

� Put GV into the bucket if
� The containment mapping maps all distinguished 

variables in Q to distinguished variables in V
12

Example of filling buckets (slide 1)

� Views
� grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
� great-grandparent(U, V) :-

parent(U, S), parent(S, T), parent(T, V)
� Query

� query(A, B) :-
parent(A, C), parent(C, D), parent(D, E),
parent(E, F), parent(F, G), parent(G, B)

� Buckets
� 6 buckets for 6 query subgoals
� 5 buckets for 5 shared variables (C, D, E, F, G)



3

13

Example of filling buckets (slide 2)

� Consider the bucket for parent(A, C)
� A is distinguished and C is shared
� No view subgoal has two distinguished variables
� So the bucket is empty

� Consider the bucket for parent(C, D)
� Both C and D are shared
� So the bucket is empty

� Similarly, buckets for other query subgoals are empty

grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
great-grandparent(U, V) :- parent(U, S), parent(S, T), parent(T, V)
query(A, B) :- parent(A, C), parent(C, D), parent(D, E),

parent(E, F), parent(F, G), parent(G, B)

14

Example of filling buckets (slide 3)

� Consider the bucket for C
� Need to find a containment mapping from

{ parent(A, C), parent(C, D) } to view subgoals
� For grandparent view, we have

� { parent(X, Z), parent(Z, Y) }
� For great-grandparent view, we have

� { parent(U, S), parent(S, T) }
� What about { parent(S, T), parent(T, V) }?

grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
great-grandparent(U, V) :- parent(U, S), parent(S, T), parent(T, V)
query(A, B) :- parent(A, C), parent(C, D), parent(D, E),

parent(E, F), parent(F, G), parent(G, B)

15

Example of filling buckets (slide 4)

� Consider the bucket for D
� Need to find a containment mapping from

{ parent(C, D), parent(D, E) } to view subgoals
� For grandparent view, we have

� { parent(X, Z), parent(Z, Y) }
� For great-grandparent view, we have

� { parent(U, S), parent(S, T) }
� { parent(S, T), parent(T, V) }

grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
great-grandparent(U, V) :- parent(U, S), parent(S, T), parent(T, V)
query(A, B) :- parent(A, C), parent(C, D), parent(D, E),

parent(E, F), parent(F, G), parent(G, B)

16

Intuition behind buckets
� Content of a bucket describes all possible ways of using 

a view to �cover� this particular subgoal or shared 
variable in the query

� Choose views to cover all subgoals and all shared 
variables in the query; join views to form a rewriting
� Contents of the buckets help narrow down the choices 

considerably
!Original bucket algorithm did consider how shared variables 

should be mapped
� The union of all rewritings formed this way gives a 

maximally-contained rewriting of the query (assuming 
no built-in predicates in the query)

17

Example of generating rewritings (slide 1)

� Subgoal buckets are all empty
� Shared-variable buckets

� C: {1, 2} → {1, 2} in gp, {1, 2} in ggp
� D: {2, 3} → {1, 2} in gp, {1, 2}, {2, 3} in ggp
� E: {3, 4} → {1, 2} in gp, {1, 2}, {2, 3} in ggp
� F: {4, 5} → {1, 2} in gp, {1, 2}, {2, 3} in ggp
� G: {5, 6} → {1, 2} in gp, {2, 3} in ggp

grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
great-grandparent(U, V) :- parent(U, S), parent(S, T), parent(T, V)
query(A, B) :- parent(A, C), parent(C, D), parent(D, E),

parent(E, F), parent(F, G), parent(G, B)

18

Example of generating rewritings (slide 2)

� Choose
� C: {1, 2} → {1, 2} in gp
� E: {3, 4} → {1, 2} in gp
� G: {5, 6} → {1, 2} in gp

� All query subgoals are covered
� The other shared variables fortunately map to 

distinguished variables in gp
! query(A, B) :- gp(A, D), gp(D, F), gp(F, B)

grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
great-grandparent(U, V) :- parent(U, S), parent(S, T), parent(T, V)
query(A, B) :- parent(A, C), parent(C, D), parent(D, E),

parent(E, F), parent(F, G), parent(G, B)



4

19

Example of generating rewritings (slide 3)

� Choose
� ggp to cover C ({1, 2} → {1, 2}) and D ({2, 3} → {2, 3})
� ggp to cover F ({4, 5} → {1, 2}) and G ({5, 6} → {2, 3})

� All query subgoals are covered
� The other shared variable (E) fortunately maps to 

distinguished variables in ggp
! query(A, B) :- ggp(A, E), ggp(E, B)

grandparent(X, Y) :- parent(X, Z), parent(Z, Y)
great-grandparent(U, V) :- parent(U, S), parent(S, T), parent(T, V)
query(A, B) :- parent(A, C), parent(C, D), parent(D, E),

parent(E, F), parent(F, G), parent(G, B)

20

Inverse-rules algorithm
Key ideas
� Invert view definitions: Turn view tuples into 

�facts� in the database that can be used to 
reconstruct base tables and answer queries

� Skolemization: Replace existential variables in 
the view definitions by Skolem functions applied 
to the variables in the heads

21

Inverse-rules algorithm example (slide 1)

� View
� gp(X, Z) :- par(X, Y), par(Y, Z)

� Query
� anc(X, Y) :- par(X, Y)
� anc(X, Z) :- anc(X, Y), anc(Y, Z)

� Inverse rules for the view
� par(X, f(X, Z)) :- gp(X, Z)
� par(f(X, Z), Z) :- gp(X, Z)

� That is it; start evaluating the query!
22

Inverse-rules algorithm example (slide 2)

� Content of gp: gp(a, c), gp(b, d), gp(c, e)
� Reconstruct par

� par(X, f(X, Z)) :- gp(X, Z)
� par(f(X, Z), Z) :- gp(X, Z)
!par(a, f(a, c)), par(b, f(b, d)), par(c, f(c, e)),

par(f(a, c), c), par(f(b, d), d), par(f(c, e), e)

a b c d e
par par par par

23

Inverse-rules algorithm example (slide 3)

� Reconstructed par
� par(a, f(a, c)), par(b, f(b, d)), par(c, f(c, e)),

par(f(a, c), c), par(f(b, d), d), par(f(c, e), e)
� Compute the query

� anc(X, Y) :- par(X, Y)
� anc(X, Z) :- anc(X, Y), anc(Y, Z)
!anc(a, f(a, c)), anc(b, f(b, d)), anc(c, f(c, e)),

anc(f(a, c), c), anc(f(b, d), d), anc(f(c, e), e)
!anc(a, c), anc(b, d), anc(c, e), anc(f(a, c), f(c, e))
!anc(a, f(c, e)), anc(f(a, c), e)
!anc(a, e)

Sure answers: those
without function symbols

24

Summary of inverse rules
� Conceptually simple
� Handles recursive queries
� Possible to remove uses of Skolem functions 

through more rewriting
� Requires reconstructing the base tables (the 

performance advantage of using materialized 
views is lost)



5

25

Many, many extensions�
� Object-oriented databases, semi-structured 

databases
� Using semantic information (e.g., constraints) in 

deriving rewritings
� Handling views with limited access patterns (e.g., 

search papers by author)
� Handling an infinite set of views (e.g., search 

papers by any number of keywords)
� �
!Still an active area of research


