XML Indexing

CPS 296.1
Topics in Database Systems

Roadmap

- **Index fabric**
- **DataGuide**
- **T-indexes**
- **Some recent papers**
 - Grust; Chung et al.; Kaushik et al., *SIGMOD*, 2002
 - Kaushik et al., *ICDE*, 2002

DataGuides

- Can handle graph data and arbitrary regular path expressions
- Given a semistructured/XML database instance DB, a DataGuide for DB is a graph G such that:
 - Every label path in DB also occurs in G
 - Complete coverage
 - Every label path in G also occurs in DB
 - Accurate coverage (no bogus path)
 - Every label path in G (starting from a particular object) is unique (i.e., G is a DFA)
 - Efficient search: to process a label path of length n, just examine n nodes in G

DataGuide example

![DataGuide example](image)

Each node in the DataGuide can point to a set of database nodes

Multiple DataGuides for same data

![Multiple DataGuides](image)

Which is better?

Strong DataGuides

- Let p, p' be two label path expressions and G a graph; define $p \equiv_G p'$ if $p(G) = p'(G)$
 - That is, p and p' are indistinguishable on G
- G is a strong DataGuide for a database DB if the equivalence relations \equiv_G and \equiv_{DB} are the same

Example

- G_1 is strong; G_2 is not
 - $A.C(DB) = \{ 5 \}$, $B.C(DB) = \{ 6, 7 \}$
 - Not equal
 - $A.C(G_1) = \{ 20 \}$, $B.C(G_2) = \{ 20 \}$
 - Equal
Size of DataGuides

• If DB is a tree, then $|G| \leq |DB|$
 – Linear construction time
• In the worst case, however, the size of a strong DataGuide may be exponential in $|DB|$

T-indexes

• Can handle graph data and, in general, multiple path expressions chained in sequence
 – 1-index indexes all objects reachable through an arbitrary path expression P from a root
 – 2-index indexes all pairs of objects connected by an arbitrary path expression P
 – T-index indexes all sequences of objects connected by a sequence of path expressions

A first attempt at 1-index (slide 1)

• Let L_v be the set of words on paths from some root node to v
 – $L_v = \{ l_1 l_2 ... l_n \mid \text{root} \rightarrow v_1 \rightarrow \cdots \rightarrow v \}$
 – That is, all path queries that lead to v
• Define equivalence relation \equiv on the nodes in DB
 – $u \equiv v$ if $L_u = L_v$
 – That is, u and v are indistinguishable by path queries starting from the root
• Notation: $[u]$ is the equivalent class containing u

A first attempt at 1-index (slide 2)

• Index is also a graph (no bigger than DB)
 – Each index node corresponds to an equivalent class; it points to the set of DB nodes in that equivalent class
 – There is an index edge labeled e from a node in s to a node in s' if there is a DB edge labeled e from a node in s to a node in s'

 ➢ Any accurate index should have at least this many nodes
 ➢ Expensive to construct (PSPACE-complete)

1-index

Idea: use simulation/bi-simulation instead of \equiv

• Stronger conditions \Rightarrow finer equivalence classes \Rightarrow more index nodes
• Simulation and bi-simulation are much easier to compute (PTIME)
 – Details in other papers
 – To be practical, still need
 • External-memory construction algorithm
 • Incremental index update algorithm

Simulation/bi-simulation (slide 1)

• A binary relation \sim on DB nodes is a (backward) bi-simulation if
 – If $v \sim v'$ and v is a root, then so is v' (and vice versa)
 • Root nodes can be bi-similar only to root nodes
 – If $v \sim v'$, then for any edge $u \rightarrow v$ there exists $u' \sim v'$ such that $u \sim u'$ (and vice versa)
 • Edges are mapped consistently

 ➢ Simulation: no “vice versa” (not symmetric in general)
Simulation/bi-simulation (slide 2)

- Two nodes \(u \) and \(v \) are bi-similar (\(u \approx_b v \)) if they are related in some bi-simulation.
- Two nodes \(u \) and \(v \) are similar (\(u \approx_s v \)) if there are two simulations \(\sim \) and \(\sim' \) s.t. \(u \sim v \) and \(v \sim' u \).
- Fact: \(u \approx_b v \Rightarrow u \approx_s v \Rightarrow u \equiv v \)
 - Why?

1-index example

- \(x \equiv y \equiv z \)
- \(x \approx_s y \approx_s z \)
- \(x \approx_b y \approx_b z \)
 - (using bi-simulation)

Analyzing 1-index

- For a tree-structured \(DB \), 1-indexes using \(\approx_b, \approx_s, \equiv \) are all identical to DataGuide.
- Always: \(\text{size}(1\text{-index}) \leq \text{size}(DB) \)
 - Unlike DataGuide
 - But we are back to NFS; is lookup time bounded?
- Always: can construct index in \(O(|DB| \log |DB|) \)
- Still need: external-memory construction algorithm and incremental update algorithm.
- Designed to answer arbitrarily complex path expressions, but such expressions may not show up often in queries.

Nodes of 2-index

- Let \(L_{(u, v)} \) be the set of words on the paths from \(u \) to \(v \)
 - \(L_{(u, v)} = \{ l_1 ... l_n | u \xrightarrow{l_1} ... \xrightarrow{l_n} v \} \)
 - That is, all path queries that return \((u, v)\) as one of its answers.
- Define equivalence relation \(\equiv \) on pairs of nodes in \(DB \)
 - \((u, v) \equiv (u', v') \) if \(L_{(u, v)} = L_{(u', v')} \)
 - That is, they are indistinguishable by path queries of the form: \(\text{root} \xrightarrow{P_1} x_1 \xrightarrow{P_2} x_2 \) in \(DB \)
- Nodes in a 2-index correspond to equivalent classes defined by \(\equiv \); each 2-index node points to \([((u, v)]\), a set of pairs in the same equivalent class as \((u, v)\).
 - Again, we can use a refinement of \(\equiv \) that is easier to compute.

Edges of 2-index

- Define 2-index edges in a way such that:
 A path query \(P \) on the 2-index returns a set of 2-index nodes that point to the answer to the query \(\text{root} \xrightarrow{P_1} x_1 \xrightarrow{P_2} x_2 \) in \(DB \)
- If \(u \xrightarrow{P} u' \) in \(DB \), then for each node \(v \) in \(DB \), \([(v, u)] \xrightarrow{P} [(v, u')] \) in the 2-index.
 - Intuitively, if \(v \) and \(u \) are connected via \(P \), then \(v \) and \(u' \) are connected via \(P. e \).
- A root of a 2-index has the form \([((u, u)]\) because \(L_{(u, u)} \) contains the empty word.
2-index example

- In general, size of the 2-index may be quadratic in $|DB|$

T-index

- Each T_i can be
 - A constant path expression, or
 - An arbitrary path expression
 - Example template: Restaurant x_1, x_2,
 - The paper also handles an arbitrary formula (single-step path), but we will not consider it here for simplicity
 - Given T_1, \ldots, T_n, find (x_1, \ldots, x_n) tuples that satisfy the query

Nodes of T-index

- Query template: root $T_1 x_1 \rightarrow T_2 x_n$
- Let $T_{(v_0, \ldots, v_n)}$ be the language generated by regular expression $R_1 S R_2 S \ldots S R_n$, where S is a special symbol, and
 - If T_i represents an arbitrary path expression, then $R_i = T_{(v_0, \ldots, v_{i-1})}$
 - If T_i represents a constant path expression, and if there is such a path from v_{i-1} to v_i, then $R_i = S$ (a special symbol); otherwise $R_i = 0$
- $(v_1, \ldots, v_i) = (u_1, \ldots, u_i)$ if $T_{(v_0, \ldots, v_i)} = T_{(u_0, \ldots, u_i)}$

Edges of T-index

- For each $[(v_1, \ldots, v_{i-1}, v_i)]$, there is an edge in T-index $[(v_1, \ldots, v_{i-1}, v_i)] \rightarrow [(v_1, \ldots, v_{i-1}, v'_i)]$
 - Intuition: after binding x_i to v', start matching T_{i+1} from v_i
 - If T_i represents an arbitrary path expression
 - If $v_i \rightarrow v'_i$ in DB, then $[(v_1, \ldots, v_{i-1}, v_i)] \rightarrow [(v_1, \ldots, v_{i-1}, v'_i)]$
 - Intuition: e can be part of T_i
 - $[(v_1, \ldots, v_{i-1}, v_i)] \rightarrow [(v_1, \ldots, v_{i-1}, v'_i)]$
 - Intuition: T_i can be of any length and terminated right here
 - If T_i represents a constant path expression
 - If $v_i \rightarrow v'_i$ in DB, then $[(v_1, \ldots, v_{i-1}, v_i)] \rightarrow [(v_1, \ldots, v_{i-1}, v'_i)]$
 - Intuition: special symbol S represents a complete match of T_i

Roots, terminals, and an example

- Roots have the form $[(v)]$, where v is a root of DB
- Terminals have the form $[(v_1, \ldots, v_{n-1}, v_n)]$
- Remove all nodes not reachable from root or not having any path to terminal
- Example: $x_1, x_1 \rightarrow x_2$

Indexing XPath axes

- Most indexing work so far concentrates on speeding up parent-child traversals
- What about other types of XPath axes such as following, preceding, etc.?
 - Example: “preceding” axis contains all nodes that are before the context node in document order, excluding any ancestors
 - Grust. “Accelerating XPath Location Steps.” SIGMOD, 2002
Pre- and post-order traversal

- Pre-order traversal (self; left subtree; right subtree)
 - $a, b, c, d, e, f, g, h, i, j$
 - Pre-order ranks of nodes: $\text{pre}(a) = 0, \text{pre}(b) = 1, \text{pre}(c) = 2, \ldots$
- Post-order traversal (left subtree; right subtree; self)
 - $d, e, f, g, h, i, j, k, l$
 - Post-order ranks of nodes: $\text{post}(d) = 0, \text{post}(e) = 1, \ldots$
- Idea: use these ranks to determine node relationship

Node descriptor indexing

- Descriptor of a node v: $\text{desc}(v) = \{\text{pre}(v), \text{post}(v), \text{par}(v), \text{att}(v), \text{tag}(v)\}$
 - $\text{par}(v)$: the pre-order rank of v’s parent
 - $\text{att}(v)$: true if node is attribute; false otherwise
 - $\text{tag}(v)$: element tag or attribute name of v
- Use R-tree or B-tree on node descriptor table

Adaptive path indexing

- Most indexing work indexes all possible paths in the data, but few paths actually come up in queries
- Index only the frequently used paths (mined from a query workload)

- Chung et al. “APEX: An Adaptive Path Index for XML Data.”
 SIGMOD, 2002

More XML indexing work

- Kaushik et al. “Exploiting Local Similarity to Efficiently Index Paths in Graph-Structured Data.” *ICDE, 2002*
 - Instead of (bi-)similarity, consider (bi-)similarity w.r.t. paths of up to length k (may get false positives)
 - Consider index updates
- Kaushik et al. “Covering Indexes for Branching Path Queries.” *SIGMOD, 2002*
 - Consider branching path queries such as //part[bolt AND nut]
 - Index each edge both forward and backward
 - Reduce the size of the index by ignoring unimportant tags, limiting k, and limiting the tree depth of branching queries