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Mining Structures of Documents

CPS 296.1
Topics in Database Systems
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Overview
! Wang and Liu. �Discovering Typical Structures of Documents: A Road Map 

Approach.� SIGIR, 1998

� Motivation: query/browsing tool, overview/summary, 
indexes, views, clustering, discovering access patterns, ...

� What is a �structure�?
� Tree expression

� What is a �typical� structure?
� Found in more than MINSUP documents

� How to discover typical structures?
� Just like Apriori
� Start from simple tree expressions to build more complex ones
� Subexpressions of a typical tree expression must be typical
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Data model
� OEM, but with list/bag instead of set

� List example: val(&o) = 
h l1:&o1, l2:&o2, l3:&o1, l1:&o3, � i

� Order matters
� Not equivalent to 
h l1:&o1, l3:&o1, l2:&o2, l1:&o3, � i

� Bag example: val(&o) = 
{ l1:&o1, l2:&o2, l3:&o1, l1:&o3, � }

� Order matters not
� Equivalent to 

{ l1:&o1, l3:&o1, l2:&o2, l1:&o3, � }
!We will ignore the case of bag in our discussion
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Tree expression
� A structure that may occur in a document

� d supports te1, but not te2, te3, te4

!Order of outgoing edges matters
!Number of duplicates matters
!Every path from the root in the tree expression must 

match a path from the root in the document
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Dealing with cycles
� Use an alias ⊥i to �point� 

back to the i-th node above 
the current one
� A smart naming scheme�

better than explicit id�s (e.g., 
easy composition)

� Limitation: not a good 
representation for cycles 
with multiple entrances
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Comparing tree expressions
� Some tree expressions are weaker than others

� If te is weaker than te�, then a document that supports 
te� must support te as well

� �Weaker than� is defined recursively on the structure 
of the trees being compared

� te2 is weaker than both te1 and te3
� te1 and te3 are incomparable
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Discovering frequent tree expressions
� Just like discovering frequent itemsets

� Transaction = document
� Itemset = tree expression
� Transaction contains itemset = 

document supports tree expression
� Itemset is in positive border = 

tree expression is frequent, and not weaker than any 
other frequent tree expression

� Question: item = ?
� Or, from another perspective: How to �grow� tree 

expressions?
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Item ≈ path expression
� A path expression represents a root-to-leaf path in 

a tree expression
� A tree expression with k leaves can be 

constructed (represented) by �gluing� a sequence 
of path expressions, one for each of the k leaves
� Order matters
� Common prefixes are merged
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Dealing with duplicates

� Use superscripts to allows duplicate labels
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Algorithm sketch
� Pass 1: Scan all documents to identify L1, the set of 

frequent tree expressions with 1 leaf
� That is, the set of frequent path expressions

� �
� Pass k

� Generate Ck, the set of candidate tree expressions with k leaves, 
from Lk � 1, the set of frequent tree expressions with k � 1 leaves

� Join and prune
� Scan all documents to count each tree expression in Ck, and 

determine Lk
� Stop if Lk = ∅

� �
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Candidate generation: join
� Recall that a tree expression with k leaves can be 

represented by a sequence of k path expressions

� Given
� p1 p2 � pk � 2 pk � 1 ∈ Lk � 1

� p1 p2 � pk � 2 pk ∈ Lk � 1

� Generate p1 p2 � pk � 2 pk � 1 pk in Ck
!Termed �extending pk � 1 by pk� in the paper
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Candidate pruning
� Join alone does not enforce the Apriori property

� For each p1 p2 � pk � 2 pk � 1 pk ∈ Ck
� p1 p2 � pk � 2 pk � 1 and p1 p2 � pk � 2 pk are frequent 

by construction
� But we still should check other subsequence of length 
k � 1; if any such subsequence is not frequent, prune 
p1 p2 � pk � 2 pk � 1 pk from Ck

!Surprisingly, this strategy is not in the paper
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Other pruning strategies (strategy 1)

� Given p1 p2 � pk � 2 pk � 1 and p1 p2 � pk � 2 pk in Lk � 1

� Do not extend pk � 1 by pk if the superscripts in 
p1 p2 � pk � 2 pk � 1 do not occur in natural order (sorted 
and has no gap)
� However, it is okay to have a gap between pk � 2 and pk, or 

between pk � 1 and pk
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Other pruning strategies (strategy 2)

� For each p1 p2 � pk � 1 pk ∈ Ck, prune it if the 
superscripts for the some label do not occur in 
sorted order
� Because no matter how we use this tree expression (to 

extend others or to be extended by others) these 
superscript will remain unsorted
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Summary
� First attempt at applying frequent itemset mining 

techniques to mining document structure 
� Mapping to the frequent itemset mining problem is fairly 

straightforward
� Patterns considered are restrictive

� All paths start from the root
� Cycles are not handled well

� Including subscripts in patterns really complicates things 
" two pruning strategies to deal with the complexity
� Better idea: extend the notion of join instead?

� Repeated path expression matching is inefficient
� How about building an index (like FP-tree)?
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End-semester logistics
� Course project

� In-class presentation: Thursday, May 2, 2pm � 5pm
� Talk: 20 � 25 minutes; Q&A: 5 � 10 minutes
� Slides/demos encouraged

� Report due Thursday, May 2, 11:59pm

� Grading
� Check CourseInfo for possible recording errors

� Deadline for requesting a correction: May 2, 11:59pm

� Final grades will be assigned on May 4

� Office hours during reading period
� Regular office hours + class meeting time, or by appointment


