
1

Mining Structures of Documents

CPS 296.1
Topics in Database Systems

2

Overview
! Wang and Liu. �Discovering Typical Structures of Documents: A Road Map 

Approach.� SIGIR, 1998

� Motivation: query/browsing tool, overview/summary, 
indexes, views, clustering, discovering access patterns, ...

� What is a �structure�?
� Tree expression

� What is a �typical� structure?
� Found in more than MINSUP documents

� How to discover typical structures?
� Just like Apriori
� Start from simple tree expressions to build more complex ones
� Subexpressions of a typical tree expression must be typical

3

Data model
� OEM, but with list/bag instead of set

� List example: val(&o) = 
h l1:&o1, l2:&o2, l3:&o1, l1:&o3, � i

� Order matters
� Not equivalent to 
h l1:&o1, l3:&o1, l2:&o2, l1:&o3, � i

� Bag example: val(&o) = 
{ l1:&o1, l2:&o2, l3:&o1, l1:&o3, � }

� Order matters not
� Equivalent to 

{ l1:&o1, l3:&o1, l2:&o2, l1:&o3, � }
!We will ignore the case of bag in our discussion

&o

&o1 &o2

l1 l2 l3

� �

�&o3

l1

4

Tree expression
� A structure that may occur in a document

� d supports te1, but not te2, te3, te4

!Order of outgoing edges matters
!Number of duplicates matters
!Every path from the root in the tree expression must 

match a path from the root in the document

l1 l2 l1 l1

l2 l2 l3l2

l3
l1

l1

l2 l2

l2
l1

l1

l2 l3

l2
l1

l1

l3 l2

l2
l1

l3

l1

l2

d te1 te2 te3 te4

5

Dealing with cycles
� Use an alias ⊥i to �point� 

back to the i-th node above 
the current one
� A smart naming scheme�

better than explicit id�s (e.g., 
easy composition)

� Limitation: not a good 
representation for cycles 
with multiple entrances

l2

l1

l4
l3 l2

l1

l4

l3

⊥3

l
a1 b1

an
bn

A B

l
a1 b1

an

A

B

bn

B

A

bn an
⊥4 ⊥4

6

Comparing tree expressions
� Some tree expressions are weaker than others

� If te is weaker than te�, then a document that supports 
te� must support te as well

� �Weaker than� is defined recursively on the structure 
of the trees being compared

� te2 is weaker than both te1 and te3
� te1 and te3 are incomparable

l1
l1

l2 l2

l2
l1

l2

te1
l1

l1

l2 l2

l2

te2
l1

l1

l2 l2

l2
l2

te3



2

7

Discovering frequent tree expressions
� Just like discovering frequent itemsets

� Transaction = document
� Itemset = tree expression
� Transaction contains itemset = 

document supports tree expression
� Itemset is in positive border = 

tree expression is frequent, and not weaker than any 
other frequent tree expression

� Question: item = ?
� Or, from another perspective: How to �grow� tree 

expressions?
8

Item ≈ path expression
� A path expression represents a root-to-leaf path in 

a tree expression
� A tree expression with k leaves can be 

constructed (represented) by �gluing� a sequence 
of path expressions, one for each of the k leaves
� Order matters
� Common prefixes are merged

l3

l1

l6

l4

l2

l5 = l3

l1

l6

glue

l1

l4 glue

l2

l5

9

Dealing with duplicates

� Use superscripts to allows duplicate labels

l3

l1

l6

l4

l2

l5 = l3

l1

l6

glue

l1

l4 glue

l2

l5

l3

l1

l6

l4

l2

l5 =

l6

glue

l1

l4 glue

l2

l5

l1

l3

l1

?

l11 l12l11 l12

10

Algorithm sketch
� Pass 1: Scan all documents to identify L1, the set of 

frequent tree expressions with 1 leaf
� That is, the set of frequent path expressions

� �
� Pass k

� Generate Ck, the set of candidate tree expressions with k leaves, 
from Lk � 1, the set of frequent tree expressions with k � 1 leaves

� Join and prune
� Scan all documents to count each tree expression in Ck, and 

determine Lk
� Stop if Lk = ∅

� �

11

Candidate generation: join
� Recall that a tree expression with k leaves can be 

represented by a sequence of k path expressions

� Given
� p1 p2 � pk � 2 pk � 1 ∈ Lk � 1

� p1 p2 � pk � 2 pk ∈ Lk � 1

� Generate p1 p2 � pk � 2 pk � 1 pk in Ck
!Termed �extending pk � 1 by pk� in the paper

12

Candidate pruning
� Join alone does not enforce the Apriori property

� For each p1 p2 � pk � 2 pk � 1 pk ∈ Ck
� p1 p2 � pk � 2 pk � 1 and p1 p2 � pk � 2 pk are frequent 

by construction
� But we still should check other subsequence of length 
k � 1; if any such subsequence is not frequent, prune 
p1 p2 � pk � 2 pk � 1 pk from Ck

!Surprisingly, this strategy is not in the paper



3

13

Other pruning strategies (strategy 1)

� Given p1 p2 � pk � 2 pk � 1 and p1 p2 � pk � 2 pk in Lk � 1

� Do not extend pk � 1 by pk if the superscripts in 
p1 p2 � pk � 2 pk � 1 do not occur in natural order (sorted 
and has no gap)
� However, it is okay to have a gap between pk � 2 and pk, or 

between pk � 1 and pk

glue

l12

glue

l14l11

te1: unnatural�do not extend

glue

l12

glue

l13l11

te2: natural�can be extended by te1
14

Other pruning strategies (strategy 2)

� For each p1 p2 � pk � 1 pk ∈ Ck, prune it if the 
superscripts for the some label do not occur in 
sorted order
� Because no matter how we use this tree expression (to 

extend others or to be extended by others) these 
superscript will remain unsorted

glue

l13

glue

l12l11

Unsorted: prune

15

Summary
� First attempt at applying frequent itemset mining 

techniques to mining document structure 
� Mapping to the frequent itemset mining problem is fairly 

straightforward
� Patterns considered are restrictive

� All paths start from the root
� Cycles are not handled well

� Including subscripts in patterns really complicates things 
" two pruning strategies to deal with the complexity
� Better idea: extend the notion of join instead?

� Repeated path expression matching is inefficient
� How about building an index (like FP-tree)?

16

End-semester logistics
� Course project

� In-class presentation: Thursday, May 2, 2pm � 5pm
� Talk: 20 � 25 minutes; Q&A: 5 � 10 minutes
� Slides/demos encouraged

� Report due Thursday, May 2, 11:59pm

� Grading
� Check CourseInfo for possible recording errors

� Deadline for requesting a correction: May 2, 11:59pm

� Final grades will be assigned on May 4

� Office hours during reading period
� Regular office hours + class meeting time, or by appointment


