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Background

♦Mining for association rules is a form of 
data mining

♦An example:
� 65% of all customers who buy pasta and tomato sauce 

also buy parmesan cheese and red wine

♦Useful for customer segmentation, cross-
marketing, catalog design and product 
placement

♦Online aggregation

Association Rule

♦ An association rule is an expression X =>Y where 
X and Y are disjoint itemsets
� The confidence of this rule is the fraction of all 

transactions containing X that also contain Y
� The support of this rule is the support of X U Y.

♦ A support must >= a user-specified support 
threshold

♦ A confidence must >= a user-specified confidence 
threshold

What�s the problem?

♦Finding association rules is a very CPU and 
memory intensive task

♦All traditional algorithms operate offline 
♦User does not know the appropriate 

thresholds in advance 

Traditional algorithms
♦ Apriori

♦ Partition
♦ Dynamic Itemset 

Counting

♦ User fixed support 
threshold in advance

♦ No feedback to user
♦ May need more than 

two scans

♦ OLAP-style
� Support threshold s specified before the 

precomputation of the large itemsets
� Large Itemset computation remains offline
� Only rules with support >= s can be generated

Carma

♦ Continuous feedback
� continuously produces association rules, while the list 

of purchases is scanned 

♦ user controllable
� During the first scan the user is free to change the 

support and confidence thresholds "on the fly"

♦ deterministic and accurate results
� guarantees that it produces all association rules after at 

most 2 scans and for each rule its precise support and 
confidence value
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Carma Algorithm: Phase I

♦ Count(v): number of occurrence of itemset v since v was inserted 
♦ First Trans(v): index of the transaction at which v was inserted
♦ maxMissd(v): upper bound on the number of occurrences of v before v 

was inserted
♦ Minsupport: count(v)/i                         lower bound
♦ Maxsupport: (maxMissed(v) + count(v))/i upper bound

Carma Algorithm: Phase I

♦ Support lattice: a superset of all large itemsets
♦ Support sequence: a sequence of support threshold       σ = (σ1, 

σ2,�..) σi denotes support threshold for the i-th transaction
♦  σ  i denotes the least monotone decreasing sequence. It is called 

ceiling of σ up to i. A sharp lower bound relative to which V is a 
support lattice.

♦ Avgi(σ)=1/i*Σ σ j   ( where 1<= j <= I ) It�s the running average of 
σ up to i.

Carma Algorithm: Phase I
Carma Algorithm: Phase I

♦ Heart of the algorithm: maxMissed(v)
♦ maxMissied(v) <=maxMissed(w)+count(w) - 1 

� Support i (w) >= support i (v) for all subsets w of v and w in t i

♦ maxMissied(v) <=  (i-1)avg i-1(  σ  i-1 )  + v -1
� Support (i-1) (v) <= avg i-1(  σ  i-1 )  + (v -1)/(i-1)

♦ maxMissied(v) is defined as 
Min {  (i-1)avg i-1(  σ  i-1 )  + v -1,

maxMissed(w)+count(w) - 1  w ⊂ v }.
♦ maxMissed(v)<= i �1  for the current transaction index.

Carma: theorem 1

♦ The term (c+1)/n is desirable 
♦ The term avg i(  σ  i ) is a sharp lower bound relative to which V is 

a support lattice
♦ Support guarantee may not match the threshold specified by the user,

but this guarantees *converges* to the user-specified threshold
if the user keeps it constant for a large number of transactions

Carma: Phase I algorithm example

♦ Count(v): number of occurrence of itemset v since v was inserted 
♦ First Trans(v): index of the transaction at which v was inserted
♦ maxMissd(v): upper bound on the number of occurrences of v before v 

was inserted
♦ Minsupport: count(v)/i                         lower bound
♦ Maxsupport: (maxMissed(v) + count(v))/i upper bound
♦ maxMissied(v) = Min {  (i-1)avg i-1(  σ  i-1 )  + v -1,

maxMissed(w)+count(w) - 1  w ⊂ v }.
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Carma: Changing support thresholds

♦ To improve the speed of convergence
� Run phase I with a lower threshold of s*0.9 instead of s.
� Increase the threshold from s*0.9 to s, as the guaranteed 

threshold reaches s.

Carma: phase II

Carma Implementation

♦Dataset with 100k transactions of an 
average size of 10 items chosen from 10k 
items and an average large itemset size of 4

♦All itemsets are stored in a single hastable
� Itemsets as keys: quickly access any subset

Performance:Carma, Apriori and DIC

♦ At thresholds 0.25% and below Carma 
outperform Apriori and DIC
� Less number of scans
� Smaller lattice maintained by Carma

Support Intervals

♦ Phase I maintains a superset of the large itemsets but 
not necessarily for the full transaction sequence

♦ Size of the support intervals (given by minsupport and 
maxsupport)
� Average size  0.042% at threshold of 0.1% while 50% of all 

itemsets with an interval size below 0.004% 

Conclusion

♦ Carma-compute large itemsets online
♦ Continuously produces large itemsets along with a 

shrinking support interval for each itemset
♦ Allow user to change the support threshold anytime during 

the first scan and always completes in at most 2 scan
♦ Carma�s itemset lattice quickly approximates a superset of 

all large itemset while the sizes of the corresponding 
support intervals shrink rapidly

♦ Second scan is not needed when shrinking support 
intervals suffice so phase I can be used continuously 


