Online Association Rule Mining

By Christian Hidber

Department of Electrical Engineering
and Computer Science, UC Berkeley

Background

+ Mining for association rules is a form of
data mining
¢ An example:

— 65% of all customers who buy pasta and tomato sauce
also buy parmesan cheese and red wine

¢ Useful for customer segmentation, cross-
marketing, catalog design and product
placement

¢ Online aggregation

Association Rule

¢ An association rule is an expression X =>Y where
X and Y are disjoint itemsets

— The confidence of this rule is the fraction of all
transactions containing X that also contain Y

— The support of this rule is the support of X U Y.
¢ A support must >= a user-specified support
threshold

¢ A confidence must >= a user-specified confidence
threshold

What’s the problem?

+ Finding association rules is a very CPU and
memory intensive task

¢ All traditional algorithms operate offline

¢ User does not know the appropriate
thresholds in advance

Traditional algorithms

¢ Apriori ¢ User fixed support
threshold in advance

+ Partition + No feedback to user
¢ Dynarplc Ttemset ¢ May need more than
Counting

two scans

¢ OLAP-style
— Support threshold s specified before the
precomputation of the large itemsets
— Large Itemset computation remains offline
— Only rules with support >= s can be generated

Carma

+ Continuous feedback

— continuously produces association rules, while the list
of purchases is scanned

+ user controllable
— During the first scan the user is free to change the
support and confidence thresholds "on the fly"
¢ deterministic and accurate results

— guarantees that it produces all association rules after at
most 2 scans and for each rule its precise support and
confidence value

Carma Algorithm: Phase I

> o o

. o

[R— S
— -
[
= 1 + 2 a2
k1 I —
=L} e AW
T

Count(v): number of occurrence of itemset v since v was inserted
First Trans(v): index of the transaction at which v was inserted

maxMissd(v): upper bound on the number of occurrences of v before v
was inserted

Minsupport: count(v)/i lower bound
Maxsupport: (maxMissed(v) + count(v))/i upper bound

Carma Algorithm: Phase I

et
—r .
[——
- LE L=
i
Figam 2
+ Support lattice: a superset of all large itemsets

-

Support sequence: a sequence of support threshold ¢ =(cl,
62,.....) oi denotes support threshold for the i-th transaction

o [& Tidenotes the least monotone decreasing sequence. It is called
ceiling of o up to i. A sharp lower bound relative to which V is a
support lattice.

Avgi(c)=1/i*2 6j (where 1<=j <=1)It’s the running average of
Gup toi.

-

Carma Algorithm: Phase
I . 5§ R

Pl frenrsribo mryemr i
ki o i~ 1 e Tty
rappal Lelkar |
-
T = 0 ar A = i ransa - =i
i, L g
i
T
bl # g ik e b 4
'LlL= ™ . -
o
r =
ST
mr Kd| vl -

Carma Algorithm: Phase I

*

Heart of the algorithm: maxMissed(v)
maxMissied(v) <=maxMissed(w)+count(w) - 1
— Support i (w) >= support i (v) for all subsets w of vand win t i
maxMissied(v) <=L (i-Davg i-1([o Ti-1) |+ [v]-1
— Support (i-1) (v) <=avg i-1([& Ti-1) +(|v [-1)/G-1)
maxMissied(v) is defined as
Min {| (i-Davgi-1([o Ti-1)]+ [v |-1,
maxMissed(w)+count(w) - 1 |wev }.

*

*

*

*

maxMissed(v)<=1i-1 for the current transaction index.

Carma: theorem 1

. o

The term (c+1)/n is desirable

The term avg i([o 11) is a sharp lower bound relative to which V is
a support lattice

Support guarantee may not match the threshold specified by the user,
but this guarantees *converges* to the user-specified threshold

if the user keeps it constant for a large number of transactions

Carma: Phase I algorithm example

¥ ¥ o v L
e mia
i [} et
ma N i i v i
prT) =] id
' ' ' ' ' ‘ b '
s ik i man mLn
W i i B REE
[- H b, =
e Lm [
[Bl s
¢ Count(v): number of occurrence of itemset v since v was inserted

-

First Trans(v): index of the transaction at which v was inserted

maxMissd(v): upper bound on the number of occurrences of v before v
was inserted

Minsupport: count(v)/i lower bound

Maxsupport: (maxMissed(v) + count(v))/i upper bound

maxMissied(v) = Min {L G-Davg i-1([o Ti-1)]+ |v |-1,
maxMissed(w)+count(w) - 1 [wev }.

-

> o

>

Carma: Changing support thresholds

B L s e T Py

o e v
S . S e
13 e - =t e
1 il
3
| LR
|
} in L} oon

e s s
[,

+ To improve the speed of convergence
— Run phase I with a lower threshold of s*0.9 instead of's.

— Increase the threshold from s*0.9 to s, as the guaranteed
threshold reaches s.

Carma Implementation

¢ Dataset with 100k transactions of an
average size of 10 items chosen from 10k
items and an average large itemset size of 4

¢ All itemsets are stored in a single hastable
— Itemsets as keys: quickly access any subset

Support Intervals
“[r o [i
- g P&
| ol
- r . i
z hPa .
: e i

¢ Phase I maintains a superset of the large itemsets but
not necessarily for the full transaction sequence

+ Size of the support intervals (given by minsupport and
maxsupport)

— Average size 0.042% at threshold of 0.1% while 50% of all
itemsets with an interval size below 0.004%

Carma: phase I1

Fom imm il b gy, Sl | . s s e ars
v — i 1

Performance:Carma, Apriori and DIC

L

e e s o v i
e : I
e =
':.-1- 1 ‘F.: - | = ,
- " | |
i
e : /
(i ngN
H I &£ o
 — i e
il T e B e =
e e

At thresholds 0.25% and below Carma
outperform Apriori and DIC

— Less number of scans

— Smaller lattice maintained by Carma

Conclusion

* o

*

*

*

Carma-compute large itemsets online

Continuously produces large itemsets along with a
shrinking support interval for each itemset

Allow user to change the support threshold anytime during
the first scan and always completes in at most 2 scan
Carma’s itemset lattice quickly approximates a superset of
all large itemset while the sizes of the corresponding
support intervals shrink rapidly

Second scan is not needed when shrinking support
intervals suffice so phase I can be used continuously

