
1

“Caching Strategies for Data“Caching Strategies for Data--
Intensive Web Sites”Intensive Web Sites”

by Khaled Yagoub, Daniela Florescu, Valerie
Issarny, Patrick Valduriez

Sara Sprenkle
CPS296
March 5, 2002

March 5, 2002 CPS296

Motivation: The ProblemMotivation: The Problem

� Dynamic Web services
� Require processing by database and Web

server
� Difficult to scale

� Reduce response time
� Decrease processing time
� Decrease server/database load

March 5, 2002 CPS296

Motivation: Problem ContextMotivation: Problem Context

� Architecture of declarative data-intensive
Web services:� Data stored in a DBMS� HTML code is separate from generation� Page structure and content is separate from

page layout (XML)� Logical model describes structure and data
content (graph)� Declarative definition language describes how
raw data maps to logical model (SQL)

March 5, 2002 CPS296

Motivation: The ProblemMotivation: The Problem

� Response time includes:
� Network communication time
� HTTP connection time
� Web application startup time
� DBMS connection time
� SQL execution time
� XML generation time
� HTML generation time

March 5, 2002 CPS296

Motivation: Evaluating solutionsMotivation: Evaluating solutions
� Previous work: pushed Web caching solutions

to extreme
� Cache: query results or Web pages
� Update strategies: push or pull
� Choices were not appropriate for all cases

� Analyze real bottlenecks of data-intensive
web sites

� Create an application-appropriate solution

March 5, 2002 CPS296

Previous WorkPrevious Work

� Materialize HTML pages� Dynamic: on the fly� Static: before requested
• good response time
• coarse materialization granularity—pages contain

multiple fragments
• high space overhead (including duplicate

information, template)
• difficult to propagate updates into materialized

pages
• cannot handle responses to forms

2

March 5, 2002 CPS296

Previous WorkPrevious Work

� Cache query results
� Benefits apps with high query execution cost,

high hit ratio
� Simpler update algorithms
� Can control cache granularity
� Increases the load on the DBMS

March 5, 2002 CPS296

Previous WorkPrevious Work

� Cache XML data representations
� Intermediate data abstractions
� Less redundant data stored, if XML fragments

divided up appropriately
� Beneficial when XML fragments are much

smaller than the HTML pages
� Reduces overhead of executing DB queries

March 5, 2002 CPS296

GoalGoal

� Flexible caching policies, strategies
� Appropriate for set of applications running on

the server
� Support caching of HTML, XML, and queries

March 5, 2002 CPS296

Materialization StrategiesMaterialization Strategies

� What kind of data should be materialized?
� Queries, XML, HTML

� When must materialization be performed?
� {before, after, predictive} wrt requests

� Where should the materialized intermediate
results by placed for effective performance
improvement?

� DB server, Web server, proxy, Web client

March 5, 2002 CPS296

Materialization StrategiesMaterialization Strategies

� How are updates from the database propagated
to the materialized data?

� Push: guarantee freshness, costly� Pull: potential staleness, OK for some apps
	 Which particular data items must be materialized

and which ones must be computed upon
request?�

Cache items which have high computation costs,
do not get updated frequently, are accessed
frequently� Otherwise, compute-on-request March 5, 2002 CPS296

Answering the questionsAnswering the questions

 Answers depend on characteristics of the
system

� Size of Web site, usage patterns
� Freshness, response time constraints
� Hardware and software environment

3

March 5, 2002 CPS296

WeaveWeave

� Web site management system
� Goal: application-appropriate caching

strategies

March 5, 2002 CPS296

WeaveLWeaveL

� Declarative language for Web site
specification

structure, content

� Site class: describes a class of Web pages
� Define each Web page as an instance of site

class
� Describes content of Web page
� Instances of class are distinguished by

specified parameters

March 5, 2002 CPS296

WeaveLWeaveL

� Specification of site class includes
� Description, query for parameters
� SQL query to execute to get content
� Hyperlinks, forms in page

March 5, 2002 CPS296

Site ArchitectureSite Architecture

component
controller

March 5, 2002 CPS296

Customizing runtime policiesCustomizing runtime policies

� WeaveRPL – language used to describe the
caching policies

� Rules for what, when, where, how, and how
much to cache
• Includes cache replacement policy

� Language allows for flexible, application-
appropriate policies

March 5, 2002 CPS296

ExperimentsExperiments

� WaveBench – test platform
� � 1 client on � 1 machine
� TPC/D benchmark
� Caching strategies� Dynamic evaluation – all processing on the

fly, worst case� Static evaluation – all precomposed� Mixed caching – flexible, application-
appropriate caching

4

March 5, 2002 CPS296

Summary of resultsSummary of results

� � � � � � � � � � � � �
� � ! " # $ % � &' () * + , - . / 0

March 5, 2002 CPS296

AnalysisAnalysis

1 Dynamic evaluation is usually worst—base
case

1 Results as expected (?)
1 Mixed caching performs the best of practical

options
2 Exception: PartSupp, Supplier

March 5, 2002 CPS296

Missing analysisMissing analysis

1 Experiments
2 No updates
2 Only one client making requests because of

high XML overhead
• Prove scalability?

1 Quantify cache hit rates
2 How many requests hit in cache?
2 How many results fit in cache?

March 5, 2002 CPS296

Missing analysisMissing analysis

1 Quantify usability, complexity
2 How difficult to create caching strategies?2 How many iterations before find appropriate

strategy?2 How does increased caching effect scheduler
performance? (Scheduler becomes
bottleneck, single point of failure)

1 Quantify overhead
2 Basically have three-tier caching; what is the

overhead of visiting each cache?

March 5, 2002 CPS296

Missing analysisMissing analysis

1 Scaling scheduler load
2 Adding new components which also require

scaling
2 May require coordinating schedulers

March 5, 2002 CPS296

Future WorkFuture Work

1 Ease configuration
2 Difficult to configure site automatically
2 Requires programmer knowledge to create

reasonable policies
2 Have tools to ease administrator’s analysis

1 Prototype - update propagation
2 Only pull model

5

March 5, 2002 CPS296

ConclusionsConclusions

3 Created a generic framework for flexible,
application-appropriate caching strategies in
data-intensive Web sites

3 Need more experiments, results, and
analysis to prove that this approach is
correct, practical, useful

March 5, 2002 CPS296

Web Caching: The ProblemWeb Caching: The Problem

3 Problem: Dynamic content changes when
parameters and underlying data changes

4 Application-defined consistency, staleness
constraints

4 Data updated consistently, completely
4 Content that depends on changed data must

be updated within some bounds

March 5, 2002 CPS296

Web Caching: SolutionsWeb Caching: Solutions

3 WebView
4 Materialization: virtual, in DBMS, in Web server
4 Performance depends on app characteristics

3 TriggerMonitor
4 Given data 5 content dependencies, can apply

update algorithm with low overhead
6 Scalable (handles high request rates)
6 Practical: implemented on Olympics Web site
6 Potential for wasted resources

March 5, 2002 CPS296

Web Caching: SolutionsWeb Caching: Solutions

7 Weave
6 Generic framework for flexible caching policies
6 Usable? Practical?

• No updates

March 5, 2002 CPS296

The Future of Web CachingThe Future of Web Caching

7 Still a hot research area
6 Haven’t found the best model, solution

7 Problems left to solve
6 Update policies
6 Consistency

• Application-appropriate 8 TACT

