View Maintenance
for
Hierarchical Semistructured Data

Hartmut Liefke and Susan B. Davidson
University of Pennsylvania

Presenter: Junyi Xie

Recap I

* View Maintenance in Relational Database
— Re-computation
— Incremental view maintenance
« Compute and apply only the incremental changes
« Insertion: Multi-linearity law
V(R,UAR,R,)=V(R,,R,)UV(AR, R,
« Deletion: Counting technique
— “Incremental Maintenance of Views with Duplicates," by
Griffin and Libkin, SIGMOD, 1995.
* What is the difference for semi-structured data?
— Different underlying data model (Tree for XML doc.)
— Re-definition of union operation

Paper Contribution

Warehouse Architecture for XML

— WHAX data model embedding both semi-
structured and relational data source

— Deep union operator
WHAX-QL based on XML-QL
Multi-linearity under constraints

Extended counting technique for delete
updates

Outlines :

Related Work

WHAX Data Model

* View Definition over WHAX
Incremental View Maintenance
» Aggregations in WHAX

Related Work

Abiteboul, et.al. “Incremental Maintenance for
Materialized Views over Semistructured Data”, VLDB 98’
— Restricted version of Lorel.
— Need additional auxiliary data structures
Zhuge, et.al. “Graph Structured Views and Their
Incremental Maintenance”, ICDE 98’
— Simple path expressions
Common drawbacks:
— Updates are always atomic: any single insertion/deletion/change of
atomic values causes view maintenance process
— No group and aggregation operations can be performed over the
VIEWS

WHAX Architecture :

* Source Data
— Relational database

e XML Warehouse
— XML repositories My
i
« XML Warehouse RN
— A materialized view on : / / /) \\\
the source data o Ml = | [
— Typically much smaller .. ” o 1 I _ “ _ H _
than underlying data [y ey e B R N
A L] RO

source d

XML Data Warehouse Architecture

WHAX Data Model

WHAX Data Model

I I
» Typical XML File N\ Person("Tom")
— An edge labeled tree WED }g’imm,,m:;;*
* Edge: labeled with tag or attribute o / '
* Leaf: associated value
* WHAX Data Model
— Each node identified with local identifier(key)
— Each node globally identified with a sequence of
local identifiers - "
* Each path from root to a node is unique XML Tree WHAX Data Model
WHAX Data Model . WHAX Data Model .
* Formal Data Model
) o . — L: set of all element tags and attribute labels
o oy T Rl « Conf, Author, Person, Age, etc.
“onll 8 nas:WCDT. | et
T O e 1551 1 P"“""'“"\t{"\"u"""’%“\b — V: set of all values(atomic values or sub-trees)
PublTitle: Types™) Publ(Tile '(Inr::h "*‘}) "WE "‘“\b + Tim, Peter, 35, {Age: 45}, etc.
P . P Qo — Key value I(k) € (LX7) denotes a local identifier
(/6 a Anshoe(2) JM!MH « Person(“Tim”), Conf(@name: “STACS”, @year: “1996”)
R AN I YAND — Tree in WHAX: {1,(k)) : v, ..., Li(k,) : v}
. T ST « Iflocal key kis empty, then use 1 as 1({})
— {Age:45}
A Sample WHAX Tree
Globally identified by: {Conf(@name:”STACS”, @year: “1996”), Pub(Title: “Views”), Author(2)}
WHAX Data Model: Example . Deep Union .

* Sub-tree of two rightmost edges can be written as:
{Person(Name: “Peter”): {Age:“45”}, Person(Name: “Jim”): {Age: “38”}}

* Fundamental Operation in WHAX

— Deep Union(v,, v,): match the common ids of
v, and v,, recursively union their respect sub-trees

. Example: match common IDs

new unified sub-tree

t Person("Tim,

Data Mapping in WHAX

e XML As WHAX Trees

— Given info about keys, labels in XML tree are
annotated with keys and keys are pulled out of

Data Mapping in WHAX .

» Relational Database in WHAX

— Natural translation: denote each tuple by an
outgoing edge from the root using key & as

XML tree local id. R
Person("Tom") . . .
— Example . — Example: R1 with primary key(A,B). "
erson("Peter"” o
Rl A |[B |[C |D RI(A: A1, B: BM\Z,B: B2)
Al | Bl | C1 | D1
A2 [B2 | 2 | D2 ¢ D g D
1 50 “C1” “1r «Can D2
WHAX Data Model
View Definition View Definition
il I
* Another Example
* Query Language: WHAX-QL .
Q y guag Q — For each author, return the book title and ISBN
— Example: Select the name and the age of all authors V2(3db) = where <Book(ISBN: $a)>
older than 36 <Title>$t</>
V1($db) = where <Person($n).Age> $a in $db, $a > 36 <Author(ID: $k)>$p</>
Construct <MyPerson($n).Age> $a </>in $db
— Difference from XML-QL: local id matched against Construct <Author(ID:$k).Book(ISBN:$a). Title>$t </>
patterns — Re-grouping power
« XML-QL: <tag> $x </> in $db « View tree: a tree with authors at root and titles at leaves
— <person>$n</> in $db * Automatically coalesced on author, no Skolem function used
* WHAX-QL: <tag<Kpat>> $x </> in $db
— <Kpat>: Key pattern, matched against with local identifiers
— <person($n)></> in $db, <person(“Tom”)></> in $db
View Definition Syntax of WHAX-QL
I I
« Still Another Example * Where-construct clause
. Py = : 1< >
— For each person, return their age and all STACS publications For query: Path pattern: <PPat
V3(sdb) = * PPat ::= LPat,(KPat)),...,.LPat,(KPat,)
where <Person(Name:$n).Age> $a </> in $db — For output: Path expression <P, Expr >
<Conf(@name:”STACS”, @year: $y).Publ(Title: $t).Author($n)> * PExpr:=LPat(e),..., LPat,(e,) Q ::= where <PPat,> $x, </> in $d,
</>in $db — Label pattern <LPat>
Construct <Author(Name:$n).Age>$a</>, o LPat:=1]| $x <PPat,>$, </>in$d_;
<Author(Name:$n).STACS(Y ear:$y). Title($t)></> . Exarnple cond,, ..., cond,
< construct
— Join Power of WHAX-QL V1($db) = where <Person($n).Age> $a <PExpr;>e, </>, ..., <PExpr,>e
* Between persons and authors over variable $n in $db, $a > 36 </> rr
Construct <MyPerson($n).Age> $a

Syntax of WHAX-QL

Incremental View Maintenance

I
+ XML-QL vs WHAX-QL * Multi-linear property
— WHAX is based on deterministic tree model — Function f is called multi-linear in each R, w.r.t.
« Each node is uniquely identified operation U if the following holds
— WHAX-QL requires no Skolem functions fR, ... R;UAR,,...,R,)=fR, ...R,...,R) U SR, .. AR, .. R)
— XML-QL needs Skolem functions to do grouping — ONLY applicable under insertions
« Example: Return titles of all book grouped by year e Multi-linear in WHAX queries
WHERE <book year = $y><title> $t</title></book> in
“book.xml” i V($db U A$db) = V($db) U V(A$db)
CONSTRUCT <bookByYear id = F1($y)> M‘“ « How to make WHAX multi-linear?
<bookTitle>$t</bookTitle> R i
</bookByYear> — Key variable constraint
— Base variable constraint
Key Variable Constraint . Key Variable Constraint .
* Variable in WHAX-QL » Key variable constraint
— parameter variable: parameters to query — A WHAX-QL query is maintainable if no)
. . . parameter/value variable $x occurs as a key variable or
— label/key variable:variables in Path Patterns bound to :
operand of some base operations e, op e,
labels/keys B
. — Intuition:
— value variable:variable at the leaf of path($x;) + Insertion may cause deletion!
- Example: — Consider another “age” is inserted for a person
- » Example:
V($db)) V(8db) = where <Person($n).Age> $a </> in $db, Person(“Tom”
where <Person(Name:$n).Age> $a </>in $db $a > 36 <-value variable is an operand
construct ... Construct <MyPerson($n).Age> $a Ame
O
What about it becomes a sub-tree? el i
Key Variable Constraint . Base Variable Constraint .

* Query-rewrite
— Query re-write

« Not always possible to rewrite a query into equivalent
maintainable query

* One way is use similar query that returns same expected results
— Not maintainable query
V($db) = where <Person($n).Age> $a </> in $db,
$a > 36 <-value variable is an operand
Construct <MyPerson($n).Age> Sa
— Maintainable similar query
V’($db) = where <Person($n).Age.$a> </> in $db,
$a>36 value variable becomes a label variable
Construct <MyPerson($n).Age> $a

» Example query
— V($db) = where
<Person(Name:$n).Age> $a </> in $db
<Conf(@name:"STACS”, @year: $y).Publ(Title: $t).Author($n)></>in $db
Construct ...
— V is not maintainable
* V($db U ASdb) # V($db) U V(ASdb)
* A8db may join with $db, multi-linearity does not hold here.
— Solution: use distinct base variable
« V’(8db, $db’) = where
<Person(Name:$n).Age> Sa </> in $db
<Conf(@name:"STACS”, @year: Sy).Publ(Title: $t).Author($n)></> in $db’
Construct ...
* V’(8db, $db) = V($db)
* V’(8db U ASdb, $db U ASdb)
= V($db, $db) U V(AS$db, $db) U V($db, ASdb) U V(A $db, ASdb)

Base Variable Constraint . Deletions .
* No Multi-linearity in deletion
* Sumrnary — For deletion
— A maintainable WHAX-QL view V (8d, , ... $d,) is multi-linear in « fRy . Ri-VR:, .. R,) F f(Ry, .. Ry s R) - f(R), s VR, ., R,)
itshparametetrs $[dI s $d4“ if all l();\s[g viria'zleds $dbt of the §ar$: — Reason: Union operation is not invertible
where-construct expression are distinct an 0 not occur 1n the
construct-clause. - %‘Xgmple: VI(A, B) = {(1,2),(2,3)} AVI(A, B)= {(2,3),
e For detai.l, che.ck out.the longc?r version of this paper] (J \Zi —VIUAVI = (1212.3).4.5))
— “Efficient View Maintenance in XML Data Warghouses « But, V2-AVI = {(1,2)} # VI
Technical Report MS-CIS-99-27 (1999), Hartmut Liefke and Susan .
Davidson + Solutions
— View analysis
« Each tuple in view has only one derivation in base relation
— Multi-set semantics/counting
« Allow duplicates by counting
WHAX w/ Counting . WHAX w/ Counting .
» Support: Count Value in WHAX * Deep Union with Counting
— Each edge is annotated with support
— full support = direct support + indirect Support
* d.support: support for edge itself(possibly zero)
* i.support: sum of supports of child edges
— Assignment for data source
* Leaf edge: f.support = d.support = 1
* Inner edge: d.support = 0, i.support = # of leaf edges . .
reached from this edge, f.support = i.support Edge with 0 support(node 146) is deleted from the result
View Maintenance in WHAX . View Maintenance in WHAX .

» Simple Example

Database

» Computing Support for Views

— Direct support for each output path Pexpr; is the product
of full support of each input path PPat,
* d.supp(Pexpr) = I fsupp(PPat,)
— Example view
V(8db, $db’) = where

<Conf(@name: “VLDB”, @year: “20007).Publ(Title: $t).Pages.From>
$from </> in $db

<Conf(@name: “VLDB”, @year: “20007).Publ(Title: $t).Pages.To> $to
</>in $db’

Construct <publ(Title:S$t).PageCount> $to - $from +1 </>

View Maintenance in WHAX

» Example
— In data source, modify the FROM-page of a publication

named “Views” from 117 to 118
Duatshase Update Updased Datsbase

o]

PabliTatke"Views (4] O

- .
Publ Tide:"Types”i4]

» Propagate update to the view
— V(DB u dDB, DB u dDB) = V(DB, DB) + V(DB,dDB) + V(dDB, DB) +

V(dDB,dDB)
\ /

Empty!

View Maintenance in WHAX .

« Path binding in V(dDB, DB)
(p3, p2), d.support = -1

-
Qubd Tibe: "Types™ 141

Authori1]1] -\ ki)
\Pa_gcs(oum[ﬂ

. —> :
F o }. : PagesCount[-1]
From[1]/ oL]
] ;

I 10

View Maintenance

Aggregation

I 1
* Propagate update to the view * Aggregation expression in construct-clause
— sum(e), avg(e), count(), min(e), max(e), etc.
ViDB,DB) ViDBADE) VIdD8,DB) VIdDBADE) V{DB+IDB DB+IDB)
b G = » Example
PubdiTideViews™i|1] ™ . Pubdi Tide:Views™i]1]
/ . ATt Vw1l / . V = where <Conf(@name: “VLDB”, @year: “2000”).Publ(Title:$t) >$a</> in $db
A Pk T Typer 1] . M _ A b T Types™N1] construct <Conf(*VLDB-2000").PublCount>count()</>
AT —— b ' PagesCoums o] 6T AT ——
1 1 — For each path binding, output path is constructed and aggregate
=) count() simply sums up the number of output path
Aggregation . Summary & Future Work .

* Deep Union for Aggregates
— Aggregates can merged through deep union

+ WHAX data model
— A hierarchical data model with key constraints
— Comprise both relational and semi-structured data
source
— WHAX-QL based on XML-QL
* Incremental view maintenance
— Multi-linearity law for insertion
N

— Counting method(support)for deletion
e Future Work ¥——— Both borrowed from RDBMS!

— Ordered data structures
— Other extensions: e.g, negation and recursion

