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Recap
• View Maintenance in Relational Database

– Re-computation
– Incremental view maintenance 

• Compute and apply only the incremental changes
• Insertion: Multi-linearity law

V(R1∪ ∆ R1, R2) = V(R1, R2) ∪ V(∆ R1, R2)
• Deletion: Counting technique

– “Incremental Maintenance of Views with Duplicates," by 
Griffin and Libkin, SIGMOD, 1995.

• What is the difference for semi-structured data?
– Different underlying data model (Tree for XML doc.)
– Re-definition of union operation

Paper Contribution
• Warehouse Architecture for XML 

– WHAX data model embedding both semi-
structured and relational data source

– Deep union operator
• WHAX-QL based on XML-QL
• Multi-linearity under constraints
• Extended counting technique for delete 

updates

Outlines

• Related Work
• WHAX Data Model
• View Definition over WHAX
• Incremental View Maintenance
• Aggregations in WHAX

Related Work
• Abiteboul, et.al. “Incremental Maintenance for 

Materialized Views over Semistructured Data”, VLDB 98’
– Restricted version of Lorel. 
– Need additional auxiliary data structures

• Zhuge, et.al. “Graph Structured Views and Their 
Incremental Maintenance”, ICDE 98’
– Simple path expressions

• Common drawbacks: 
– Updates are always atomic: any single insertion/deletion/change of 

atomic values causes view maintenance process
– No group and aggregation operations can be performed over the 

views

WHAX Architecture

• Source Data
– Relational database
– XML repositories

• XML Warehouse
– A materialized view on 

the source data
– Typically much smaller 

than underlying data 
source

XML Data Warehouse Architecture
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WHAX Data Model

• Typical XML File
– An edge labeled tree

• Edge: labeled with tag or attribute
• Leaf: associated value

• WHAX Data Model
– Each node identified with local identifier(key)
– Each node globally identified with a sequence of 

local identifiers 
• Each path from root to a node is unique 

WHAX Data Model
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WHAX Data Model

WHAX Data Model

A Sample WHAX Tree
Globally identified by: {Conf(@name:”STACS”, @year: “1996”), Pub(Title: “Views”),  Author(2)}

WHAX Data Model
• Formal Data Model

– L: set of all element tags and attribute labels
• Conf, Author, Person, Age, etc.

– V: set of all values(atomic values or sub-trees)
• Tim, Peter, 35, {Age: 45}, etc. 

– Key value l(k) ∈ ( L×V ) denotes a local identifier
• Person(“Tim”), Conf(@name: “STACS”, @year: “1996”)

– Tree in WHAX: {l1(k1) : v1, …, ln(kn) : vn}
• If local key k is empty, then use l as l({}) 

– {Age:45}

WHAX Data Model: Example

• Sub-tree of two rightmost edges can be written as: 
{Person(Name: “Peter”): {Age:“45”}, Person(Name: “Jim”): {Age: “38”}}

Deep Union

• Fundamental Operation in WHAX
– Deep Union(v1, v2): match the common ids of 

v1 and v2 , recursively union their respect sub-trees

• Example:

union sub-trees

match common IDs new unified sub-tree
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Data Mapping in WHAX

• XML As WHAX Trees
– Given info about keys, labels in XML tree are 

annotated with keys and keys are pulled out of 
XML tree

– Example:
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Data Mapping in WHAX

• Relational Database in WHAX
– Natural translation: denote each tuple by an 

outgoing edge from the root using key k as 
local id. 

– Example: R1 with primary key(A,B)
R1 A B C D

A1 B1 C1 D1

A2 B2 C2 D2

R1(A: A1, B: B1) R1(A: A2, B: B2)

C D C D

“C1” “D1” “C2” “D2”

R2(…)

View Definition

• Query Language: WHAX-QL
– Example: Select the name and the age of all authors 

older than 36
V1($db) = where <Person($n).Age> $a </a> in $db, $a > 36
Construct <MyPerson($n).Age> $a </a>

– Difference from XML-QL: local id matched against 
patterns

• XML-QL:  <tag> $x </> in $db 
– <person>$n</> in $db

• WHAX-QL: <tag<Kpat>> $x </> in $db
– <Kpat>: Key pattern, matched against with local identifiers
– <person($n)></> in $db, <person(“Tom”)></> in $db

View Definition
• Another Example

– For each author, return the book title and ISBN
V2($db)  = where <Book(ISBN: $a)>
<Title>$t</>
<Author(ID: $k)>$p</>
</> in $db
Construct <Author(ID:$k).Book(ISBN:$a).Title>$t </>

– Re-grouping power 
• View tree: a tree with authors at root and titles at leaves
• Automatically coalesced on author, no Skolem function used

View Definition

• Still Another Example
– For each person, return their age and all STACS publications

V3($db)  = 
where <Person(Name:$n).Age> $a </> in $db

<Conf(@name:”STACS”, @year: $y).Publ(Title:  $t).Author($n)>    
</> in $db

Construct <Author(Name:$n).Age>$a</>,
<Author(Name:$n).STACS(Year:$y).Title($t)></>

– Join Power of WHAX-QL
• Between persons and authors over variable $n

Syntax of WHAX-QL
• Where-construct clause

– For query: Path pattern: <PPat> 
• PPat ::= LPat1(KPat1),…,LPatn(KPatn)

– For output: Path expression <PExpr>
• PExpr ::= LPat1(e1),…, LPatn(en)

– Label pattern <LPat>
• LPat ::= l | $x

• Example
V1($db) = where <Person($n).Age> $a
</a> in $db, $a > 36

Construct <MyPerson($n).Age> $a </a>

Q ::= where <PPat1> $x1 </> in $d1
…

<PPatm> $xm </> in $dm;
cond1, … , condn

construct 
<PExpr1> e1 </>, … , <PExprp> ep

</>
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Syntax of WHAX-QL

• XML-QL vs WHAX-QL
– WHAX is based on deterministic tree model

• Each node is uniquely identified
– WHAX-QL requires no Skolem functions
– XML-QL needs Skolem functions to do grouping

• Example: Return titles of all book grouped by year
WHERE <book year = $y><title> $t</title></book> in 
“book.xml”
CONSTRUCT <bookByYear id = F1($y)> 
<bookTitle>$t</bookTitle>
</bookByYear> 

Skolem function

Incremental View Maintenance 

• Multi-linear property
– Function f is called multi-linear in each Ri w.r.t. 

operation ∪ if the following holds

– ONLY applicable under insertions
• Multi-linear in WHAX queries

• How to make WHAX multi-linear?
– Key variable constraint
– Base variable constraint

f(R1, ..., Ri ∪ ∆Ri , ..., Rn ) = f(R1, ..., Ri, ..., Rn) ∪ f(R1, ..., ∆Ri, ..., Rn) 

V($db ∪ ∆$db ) = V($db) ∪ V(∆$db)

Key Variable Constraint

• Variable in WHAX-QL
– parameter variable: parameters to query
– label/key variable:variables in Path Patterns bound to 

labels/keys
– value variable:variable at the leaf of path($xi)
– Example:
V($db)  = 

where <Person(Name:$n).Age> $a </> in $db
construct …

Key Variable Constraint

• Key variable constraint
– A WHAX-QL query is maintainable if no 

parameter/value variable $x occurs as a key variable or 
operand of some base operations e1 op e2

– Intuition:
• Insertion may cause deletion!

– Consider another “age” is inserted for a person 
• Example:

V($db) = where <Person($n).Age> $a </> in $db, 
$a > 36 <-value variable is an operand

Construct <MyPerson($n).Age> $a </a>

Person(“Tom”)

Age

“40”
What about it becomes a sub-tree?

Key Variable Constraint

• Query-rewrite 
– Query re-write 

• Not always possible to rewrite a query into equivalent 
maintainable query

• One way is use similar query that returns same expected results
– Not maintainable query

V($db) = where <Person($n).Age> $a </> in $db, 
$a > 36 <-value variable is an operand

Construct <MyPerson($n).Age> $a </a>
– Maintainable similar query

V’($db) = where <Person($n).Age.$a> </> in $db, 
$a > 36 value variable becomes a label variable

Construct <MyPerson($n).Age> $a </a>

Base Variable Constraint
• Example query

– V($db)  = where 
<Person(Name:$n).Age> $a </> in $db
<Conf(@name:”STACS”, @year: $y).Publ(Title:  $t).Author($n)></> in $db
Construct …

– V is not maintainable
• V($db ∪ ∆$db ) ≠ V($db) ∪ V(∆$db)
• ∆$db may join with $db, multi-linearity does not hold here.

– Solution: use distinct base variable
• V’($db, $db’)  = where 
<Person(Name:$n).Age> $a </> in $db
<Conf(@name:”STACS”, @year: $y).Publ(Title:  $t).Author($n)></> in $db’
Construct …
• V’($db, $db) = V($db)
• V’($db ∪ ∆$db, $db ∪ ∆$db) 

= V($db, $db) ∪ V(∆$db, $db) ∪ V($db, ∆$db) ∪ V(∆ $db, ∆$db)
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Base Variable Constraint

• Summary
– A maintainable WHAX-QL view V ($d1 , ... $dn) is multi-linear in 

its parameters $d1 , ... $dn if all base variables $db of the same 
where-construct expression are distinct and do not occur in the 
construct-clause.

• For detail, check out the longer version of this paper
– “Efficient View Maintenance in XML Data Warehouses”

Technical Report MS-CIS-99-27 (1999), Hartmut Liefke and Susan 
Davidson

Deletions
• No Multi-linearity in deletion

– For deletion
• f(R1, ..., Ri - ▽Ri , ..., Rn ) ≠ f(R1, ..., Ri, ..., Rn) - f(R1, ..., ▽Ri, ..., Rn)

– Reason: Union operation is not invertible
– Example: V1(A, B) = {(1,2),(2,3)} ∆V1(A, B)= {(2,3), 

(4,5)}  
• V2 = V1 ∪ ∆V1 = {(1,2),(2,3),(4,5)}
• But, V2 - ∆V1 = {(1,2)} ≠ V1

• Solutions
– View analysis

• Each tuple in view has only one derivation in base relation 
– Multi-set semantics/counting

• Allow duplicates by counting

WHAX w/ Counting 

• Support: Count Value in WHAX
– Each edge is annotated with support
– full support = direct support + indirect Support

• d.support: support for edge itself(possibly zero)
• i.support: sum of supports of child edges

– Assignment for data source
• Leaf edge: f.support = d.support = 1
• Inner edge: d.support = 0, i.support = # of leaf edges 

reached from this edge, f.support = i.support

WHAX w/ Counting

• Deep Union with Counting

Edge with 0 support(node 146) is deleted from the result

147[ 1]

View Maintenance in WHAX

• Simple Example

View Maintenance in WHAX

• Computing Support for Views
– Direct support for each output path Pexprj is the product 

of full support of each input path PPati

• d.supp(Pexprj) = Пf.supp(PPati)

– Example view
V($db, $db’)  = where
<Conf(@name: “VLDB”, @year: “2000”).Publ(Title: $t).Pages.From>

$from </> in $db
<Conf(@name: “VLDB”, @year: “2000”).Publ(Title: $t).Pages.To> $to 

</> in $db’
Construct <publ(Title:$t).PageCount> $to - $from +1 </>
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View Maintenance in WHAX
• Example

– In data source, modify the FROM-page of a publication 
named “Views” from 117 to 118

• Propagate update to the view
– V(DB ∪ dDB, DB ∪ dDB) = V(DB, DB) +  V(DB,dDB) + V(dDB, DB) + 

V(dDB,dDB)

Empty!

View Maintenance in WHAX

• Path binding in V(dDB, DB) 
• (p3, p2), d.support = -1
• (p4, p2), d.support = 1

View Maintenance

• Propagate update to the view

Aggregation 

• Aggregation expression in construct-clause
– sum(e), avg(e), count(), min(e), max(e), etc.

• Example
V = where <Conf(@name: “VLDB”, @year: “2000”).Publ(Title:$t) >$a</> in $db
construct <Conf(“VLDB-2000”).PublCount>count( )</>

– For each path binding, output path is constructed and aggregate 
count( ) simply sums up the number of output path

Aggregation 

• Deep Union for Aggregates
– Aggregates can merged through deep union

Summary & Future Work

• WHAX data model
– A hierarchical data model with key constraints
– Comprise both relational and semi-structured data 

source
– WHAX-QL based on XML-QL

• Incremental view maintenance
– Multi-linearity law for insertion
– Counting method(support)for deletion

• Future Work
– Ordered data structures
– Other extensions: e.g, negation and recursion

Both borrowed from RDBMS!


