
1

View Maintenance
for

Hierarchical Semistructured Data

Hartmut Liefke and Susan B. Davidson
University of Pennsylvania

Presenter: Junyi Xie

Recap
• View Maintenance in Relational Database

– Re-computation
– Incremental view maintenance

• Compute and apply only the incremental changes
• Insertion: Multi-linearity law

V(R1∪ ∆ R1, R2) = V(R1, R2) ∪ V(∆ R1, R2)
• Deletion: Counting technique

– “Incremental Maintenance of Views with Duplicates," by
Griffin and Libkin, SIGMOD, 1995.

• What is the difference for semi-structured data?
– Different underlying data model (Tree for XML doc.)
– Re-definition of union operation

Paper Contribution
• Warehouse Architecture for XML

– WHAX data model embedding both semi-
structured and relational data source

– Deep union operator
• WHAX-QL based on XML-QL
• Multi-linearity under constraints
• Extended counting technique for delete

updates

Outlines

• Related Work
• WHAX Data Model
• View Definition over WHAX
• Incremental View Maintenance
• Aggregations in WHAX

Related Work
• Abiteboul, et.al. “Incremental Maintenance for

Materialized Views over Semistructured Data”, VLDB 98’
– Restricted version of Lorel.
– Need additional auxiliary data structures

• Zhuge, et.al. “Graph Structured Views and Their
Incremental Maintenance”, ICDE 98’
– Simple path expressions

• Common drawbacks:
– Updates are always atomic: any single insertion/deletion/change of

atomic values causes view maintenance process
– No group and aggregation operations can be performed over the

views

WHAX Architecture

• Source Data
– Relational database
– XML repositories

• XML Warehouse
– A materialized view on

the source data
– Typically much smaller

than underlying data
source

XML Data Warehouse Architecture

2

WHAX Data Model

• Typical XML File
– An edge labeled tree

• Edge: labeled with tag or attribute
• Leaf: associated value

• WHAX Data Model
– Each node identified with local identifier(key)
– Each node globally identified with a sequence of

local identifiers
• Each path from root to a node is unique

WHAX Data Model

Person

Person

Conf.

Name

Age

Name

Age

45

50

Tom
Peter

Person("Tom")

Person("Peter")

Conf.

Age
Age

45

XML Tree

50

WHAX Data Model

WHAX Data Model

A Sample WHAX Tree
Globally identified by: {Conf(@name:”STACS”, @year: “1996”), Pub(Title: “Views”), Author(2)}

WHAX Data Model
• Formal Data Model

– L: set of all element tags and attribute labels
• Conf, Author, Person, Age, etc.

– V: set of all values(atomic values or sub-trees)
• Tim, Peter, 35, {Age: 45}, etc.

– Key value l(k) ∈ (L×V) denotes a local identifier
• Person(“Tim”), Conf(@name: “STACS”, @year: “1996”)

– Tree in WHAX: {l1(k1) : v1, …, ln(kn) : vn}
• If local key k is empty, then use l as l({})

– {Age:45}

WHAX Data Model: Example

• Sub-tree of two rightmost edges can be written as:
{Person(Name: “Peter”): {Age:“45”}, Person(Name: “Jim”): {Age: “38”}}

Deep Union

• Fundamental Operation in WHAX
– Deep Union(v1, v2): match the common ids of

v1 and v2 , recursively union their respect sub-trees

• Example:

union sub-trees

match common IDs new unified sub-tree

3

Data Mapping in WHAX

• XML As WHAX Trees
– Given info about keys, labels in XML tree are

annotated with keys and keys are pulled out of
XML tree

– Example:
Person

Person

Conf.

Name

Age

Name

Age

45

50

Tom
Peter

Person("Tom")

Person("Peter")

Conf.

Age
Age

45

XML Tree

50

WHAX Data Model

Data Mapping in WHAX

• Relational Database in WHAX
– Natural translation: denote each tuple by an

outgoing edge from the root using key k as
local id.

– Example: R1 with primary key(A,B)
R1 A B C D

A1 B1 C1 D1

A2 B2 C2 D2

R1(A: A1, B: B1) R1(A: A2, B: B2)

C D C D

“C1” “D1” “C2” “D2”

R2(…)

View Definition

• Query Language: WHAX-QL
– Example: Select the name and the age of all authors

older than 36
V1($db) = where <Person($n).Age> $a in $db, $a > 36
Construct <MyPerson($n).Age> $a

– Difference from XML-QL: local id matched against
patterns

• XML-QL: <tag> $x </> in $db
– <person>$n</> in $db

• WHAX-QL: <tag<Kpat>> $x </> in $db
– <Kpat>: Key pattern, matched against with local identifiers
– <person($n)></> in $db, <person(“Tom”)></> in $db

View Definition
• Another Example

– For each author, return the book title and ISBN
V2($db) = where <Book(ISBN: $a)>
<Title>$t</>
<Author(ID: $k)>$p</>
</> in $db
Construct <Author(ID:$k).Book(ISBN:$a).Title>$t </>

– Re-grouping power
• View tree: a tree with authors at root and titles at leaves
• Automatically coalesced on author, no Skolem function used

View Definition

• Still Another Example
– For each person, return their age and all STACS publications

V3($db) =
where <Person(Name:$n).Age> $a </> in $db

<Conf(@name:”STACS”, @year: $y).Publ(Title: $t).Author($n)>
</> in $db

Construct <Author(Name:$n).Age>$a</>,
<Author(Name:$n).STACS(Year:$y).Title($t)></>

– Join Power of WHAX-QL
• Between persons and authors over variable $n

Syntax of WHAX-QL
• Where-construct clause

– For query: Path pattern: <PPat>
• PPat ::= LPat1(KPat1),…,LPatn(KPatn)

– For output: Path expression <PExpr>
• PExpr ::= LPat1(e1),…, LPatn(en)

– Label pattern <LPat>
• LPat ::= l | $x

• Example
V1($db) = where <Person($n).Age> $a
 in $db, $a > 36

Construct <MyPerson($n).Age> $a

Q ::= where <PPat1> $x1 </> in $d1
…

<PPatm> $xm </> in $dm;
cond1, … , condn

construct
<PExpr1> e1 </>, … , <PExprp> ep

</>

4

Syntax of WHAX-QL

• XML-QL vs WHAX-QL
– WHAX is based on deterministic tree model

• Each node is uniquely identified
– WHAX-QL requires no Skolem functions
– XML-QL needs Skolem functions to do grouping

• Example: Return titles of all book grouped by year
WHERE <book year = $y><title> $t</title></book> in
“book.xml”
CONSTRUCT <bookByYear id = F1($y)>
<bookTitle>$t</bookTitle>
</bookByYear>

Skolem function

Incremental View Maintenance

• Multi-linear property
– Function f is called multi-linear in each Ri w.r.t.

operation ∪ if the following holds

– ONLY applicable under insertions
• Multi-linear in WHAX queries

• How to make WHAX multi-linear?
– Key variable constraint
– Base variable constraint

f(R1, ..., Ri ∪ ∆Ri , ..., Rn) = f(R1, ..., Ri, ..., Rn) ∪ f(R1, ..., ∆Ri, ..., Rn)

V($db ∪ ∆$db) = V($db) ∪ V(∆$db)

Key Variable Constraint

• Variable in WHAX-QL
– parameter variable: parameters to query
– label/key variable:variables in Path Patterns bound to

labels/keys
– value variable:variable at the leaf of path($xi)
– Example:
V($db) =

where <Person(Name:$n).Age> $a </> in $db
construct …

Key Variable Constraint

• Key variable constraint
– A WHAX-QL query is maintainable if no

parameter/value variable $x occurs as a key variable or
operand of some base operations e1 op e2

– Intuition:
• Insertion may cause deletion!

– Consider another “age” is inserted for a person
• Example:

V($db) = where <Person($n).Age> $a </> in $db,
$a > 36 <-value variable is an operand

Construct <MyPerson($n).Age> $a

Person(“Tom”)

Age

“40”
What about it becomes a sub-tree?

Key Variable Constraint

• Query-rewrite
– Query re-write

• Not always possible to rewrite a query into equivalent
maintainable query

• One way is use similar query that returns same expected results
– Not maintainable query

V($db) = where <Person($n).Age> $a </> in $db,
$a > 36 <-value variable is an operand

Construct <MyPerson($n).Age> $a
– Maintainable similar query

V’($db) = where <Person($n).Age.$a> </> in $db,
$a > 36 value variable becomes a label variable

Construct <MyPerson($n).Age> $a

Base Variable Constraint
• Example query

– V($db) = where
<Person(Name:$n).Age> $a </> in $db
<Conf(@name:”STACS”, @year: $y).Publ(Title: $t).Author($n)></> in $db
Construct …

– V is not maintainable
• V($db ∪ ∆$db) ≠ V($db) ∪ V(∆$db)
• ∆$db may join with $db, multi-linearity does not hold here.

– Solution: use distinct base variable
• V’($db, $db’) = where
<Person(Name:$n).Age> $a </> in $db
<Conf(@name:”STACS”, @year: $y).Publ(Title: $t).Author($n)></> in $db’
Construct …
• V’($db, $db) = V($db)
• V’($db ∪ ∆$db, $db ∪ ∆$db)

= V($db, $db) ∪ V(∆$db, $db) ∪ V($db, ∆$db) ∪ V(∆ $db, ∆$db)

5

Base Variable Constraint

• Summary
– A maintainable WHAX-QL view V ($d1 , ... $dn) is multi-linear in

its parameters $d1 , ... $dn if all base variables $db of the same
where-construct expression are distinct and do not occur in the
construct-clause.

• For detail, check out the longer version of this paper
– “Efficient View Maintenance in XML Data Warehouses”

Technical Report MS-CIS-99-27 (1999), Hartmut Liefke and Susan
Davidson

Deletions
• No Multi-linearity in deletion

– For deletion
• f(R1, ..., Ri - ▽Ri , ..., Rn) ≠ f(R1, ..., Ri, ..., Rn) - f(R1, ..., ▽Ri, ..., Rn)

– Reason: Union operation is not invertible
– Example: V1(A, B) = {(1,2),(2,3)} ∆V1(A, B)= {(2,3),

(4,5)}
• V2 = V1 ∪ ∆V1 = {(1,2),(2,3),(4,5)}
• But, V2 - ∆V1 = {(1,2)} ≠ V1

• Solutions
– View analysis

• Each tuple in view has only one derivation in base relation
– Multi-set semantics/counting

• Allow duplicates by counting

WHAX w/ Counting

• Support: Count Value in WHAX
– Each edge is annotated with support
– full support = direct support + indirect Support

• d.support: support for edge itself(possibly zero)
• i.support: sum of supports of child edges

– Assignment for data source
• Leaf edge: f.support = d.support = 1
• Inner edge: d.support = 0, i.support = # of leaf edges

reached from this edge, f.support = i.support

WHAX w/ Counting

• Deep Union with Counting

Edge with 0 support(node 146) is deleted from the result

147[1]

View Maintenance in WHAX

• Simple Example

View Maintenance in WHAX

• Computing Support for Views
– Direct support for each output path Pexprj is the product

of full support of each input path PPati

• d.supp(Pexprj) = Пf.supp(PPati)

– Example view
V($db, $db’) = where
<Conf(@name: “VLDB”, @year: “2000”).Publ(Title: $t).Pages.From>

$from </> in $db
<Conf(@name: “VLDB”, @year: “2000”).Publ(Title: $t).Pages.To> $to

</> in $db’
Construct <publ(Title:$t).PageCount> $to - $from +1 </>

6

View Maintenance in WHAX
• Example

– In data source, modify the FROM-page of a publication
named “Views” from 117 to 118

• Propagate update to the view
– V(DB ∪ dDB, DB ∪ dDB) = V(DB, DB) + V(DB,dDB) + V(dDB, DB) +

V(dDB,dDB)

Empty!

View Maintenance in WHAX

• Path binding in V(dDB, DB)
• (p3, p2), d.support = -1
• (p4, p2), d.support = 1

View Maintenance

• Propagate update to the view

Aggregation

• Aggregation expression in construct-clause
– sum(e), avg(e), count(), min(e), max(e), etc.

• Example
V = where <Conf(@name: “VLDB”, @year: “2000”).Publ(Title:$t) >$a</> in $db
construct <Conf(“VLDB-2000”).PublCount>count()</>

– For each path binding, output path is constructed and aggregate
count() simply sums up the number of output path

Aggregation

• Deep Union for Aggregates
– Aggregates can merged through deep union

Summary & Future Work

• WHAX data model
– A hierarchical data model with key constraints
– Comprise both relational and semi-structured data

source
– WHAX-QL based on XML-QL

• Incremental view maintenance
– Multi-linearity law for insertion
– Counting method(support)for deletion

• Future Work
– Ordered data structures
– Other extensions: e.g, negation and recursion

Both borrowed from RDBMS!

