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Is Apriori Efficient Enough? 
�Performance Bottlenecks!!

$ Basic Idea: Candidate generation-and-test
$ Use frequent (k � 1)-itemsets to generate candidate

frequent k-itemsets
$ Use database scan and pattern matching to test (i.e., 

collect counts for the candidate itemsets)
$ Bottleneck:

$ Generation may lead to huge candidate sets
$ n frequent 1-itemset will generate n(n-1)/2 candidate 2-

itemsets
$ To discover a frequent pattern of length 100, e.g., {a1, 

a2, �, a100}, we need to generate 2100 ≈ 1030 candidates.
$ Test involves multiple scans of the entire database

$ Needs (n +1 ) scans, n is the length of the longest pattern
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Can We Do Better? � Mining frequent 
patterns without candidate generation

$ Database projection and compression
$ Project the database based on its frequent patterns
$ Compress a database into a compact,  Frequent-Pattern 

tree (FP-tree) 
$ condensed, but complete for frequent pattern mining
$ no candidate generation: test projected database only!

$ ®Divide-and-conquer�
$ decompose both the task and DB according to the 

frequent patterns obtained so far

4

Construction of FP-tree from a 
Transaction Database

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1 Scan DB once, find 
frequent 1-itemset 
(single item pattern)

2 Order frequent items in 
frequency descending 
order

3 Scan DB again, 
construct FP-tree

5

Benefits of the FP-tree Structure

$ Completeness 
$ Preserves complete information for frequent pattern 

mining

$ Compactness
$ Reducing irrelevant info�infrequent items are gone
$ Items in frequency descent order: the more frequently 

occurring, the more likely to be shared
$ Never be larger than the original database (not count 

node-links and the count field)
$ For Connect-4 DB, compression ratio could be over 100
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Mining Frequent Patterns 
with FP-trees

$ Idea: Frequent pattern growth
$ Recursively grow frequent patterns by pattern and 

database partition

$ Method 
$ For each frequent item, construct its conditional 

pattern-base, and then its conditional FP-tree
$ Repeat the process on each newly created conditional 

FP-tree 
$ Until the resulting FP-tree is empty, or it contains only 

one path�single path will generate all the 
combinations of its sub-paths, each of which is a 
frequent pattern
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From FP-tree to Conditional 
Pattern-Base

$ Starting at the frequent item header table in the FP-tree
$ Traverse the FP-tree by following the link of each 

frequent item p
$ Accumulate all of transformed prefix paths of item p to 

form p�s conditional pattern base

Conditional pattern bases
itemcond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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Transformed Prefix Paths

$ Derive the transformed prefix paths of item p
$ For each item p in the tree, collect p�s prefix path 

with count = p�s frequency

Conditional pattern bases
itemcond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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From Conditional Pattern-Bases to 
Conditional FP-trees 

$ For each pattern-base
$ Accumulate the count for each item in the base
$ Construct the FP-tree for the frequent items of the 

pattern base
m-conditional pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent 
patterns relate to m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam

â â

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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Recursion: Mining Each 
Conditional FP-tree Until �

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of ®am�: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of ®cm�: (f:3)
{}

f:3
cm-conditional FP-tree

Cond. pattern base of ®cam�: (f:3)

{}

f:3
cam-conditional FP-tree
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A Special Case: Single FP-tree Path

$ Suppose a (conditional) FP-tree T has a single path P

$ The complete set of frequent patterns of T can be 
generated by enumeration of all the combinations of the 
sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns 
concerning m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam

â
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FP-Growth vs. Apriori: Scalability 
With the Support Threshold
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FP-Growth vs. Apriori: Scalability 
With the Number of Transactions
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FP-Growth vs. Tree-Projection: 
Scalability with the Support Threshold
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FP-growth vs. Tree-Projection: 
Scalability with the # of Transactions
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Why Is FP-Growth the Winner?

$ decompose both the mining task and DB 
according to the frequent patterns obtained 
so far

$ no redundant counting
$ leads to focused search of smaller databases
$ no candidate generation, no candidate test
$ compressed database: FP-tree structure
$ no repeated scan of entire database 
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I/O-Bound FP-Growth: Scaling FP-
Growth by DB Projection

$ FP-tree cannot fit in memory?�DB projection

$ first partition a database into a set of projected DBs

$ then construct and mine FP-tree for each projected DB

$ Alternative methods

$ Construction of a disk-resident FP-tree

$ Materialization and incremental update of an FP-tree
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Partition-Based Projection

Tran. DB 
fcamp
fcabm
fb
cbp
fcamp

p-proj DB 
fcam
cb
fcam

m-proj DB 
fcab
fca
fca

b-proj DB 
f
�

a-proj DB
fc
�

c-proj DB
f
�

c-proj DB 
�

am-proj DB 
fc
fc
fc

cm-proj DB 
f
f
f

�
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Thank you !!!


