
Caching Strategies for Data-Intensive Web Sites

Khaled Yagoub, Daniela Florescu, Val�erie Issarny, Patrick Valduriez

INRIA-Rocquencourt

Domaine de Voluceau, 78153 Le Chesnay C�edex, France

flastname.�rstnameg@inria.fr

Abstract.

Data-intensive Web sites serve large volumes of pages
whose content is dynamically extracted from a database.
Such Web sites have very high software development and
maintenance costs and in general o�er poor response times
due to the heavy interaction with the database system.
This paper introduces the Weave management system de-
veloped at INRIA, which alleviates the above shortcomings
of data-intensive Web sites. Weave relies on the declara-
tive speci�cation of Web sites and o�ers a number of tools
for the easy implementation, deployment and monitoring
of the speci�ed site. Weave features a customizable cache
system that implements the optimal data materialization
strategy according to the Web site's speci�cs: it can cache
database data, XML fragments and HTML �les. To ex-
plore Weave's performance we have built a Web site based
on the TPC/D benchmark database using the WeaveBench
test platform. We conducted a number of experiments with
various data materialization strategies supported by our
system. Results clearly show that in the general case, a
mix of di�erent caching policies is required to achieve op-
timal performance.

1 Introduction

Confronted to the rapid growth of the Internet and the
need to quickly deploy e�ective solutions, many researchers
have devoted their energy to improving Web performance
by reducing client latency and bandwidth consumption and
increasing servers scalability and availability. Proposed so-
lutions include predictive prefetching, caching of Web ob-
jects, and the architecting of network and Web servers.
Analyses show that existing solutions are bene�cial but
not yet satisfactory. Proxy caches are currently the most
e�ective mechanism to improve Web performance, and yet

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the VLDB copyright notice and

the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,

Cairo, Egypt, 2000.

traces clearly show that these caches only manage to at-
tain a maximal hit rate of about 50% [27]. This limitation
is mainly due to the dynamic nature of many HTML doc-
uments, which prevents them to be cached at the proxy
level. Dynamic documents are typically generated using
CGI scripts or they include the result of a query to a
database. The
ourishing of database-centric e-commerce
applications is making the current state of a�airs even
worse, rapidly increasing the percentage of dynamic Web
documents.

As more and more Web sites put their data content un-
der the control of dedicated database management systems
(DBMSs) to ensure data's persistence, availability and con-
sistency, improving the access performance to database
generated documents becomes a key issue in the improve-
ment of the overall Web performance. This paper ad-
dresses the design, implementation and performance of
data-intensive Web sites: Web sites that provide access to a
large number of pages whose content is extracted from rela-
tional databases. Current data-intensive Web sites contain
large amounts of ad-hoc code which is application and plat-
form speci�c, leading to an unbearable system complexity.
Complexity translates in very high development and main-
tenance costs and reduced optimization opportunities. We
believe that it is necessary to provide development tools
and construction methods based on site's high-level speci-
�cation. Declarative Web site speci�cations can dramati-
cally reduce development and maintenance costs while, by
making the system's overall structure explicit, they help
to automate the detection and deployment of performance
improvement solutions. In this paper we describe Weave:
a data-intensive Web site management system developed
at INRIA1 that is based on the above principle. Weave
supports a high level methodology for the easy design, im-
plementation, pro�ling and optimization of Web sites built
on relational databases.

The performance problem of data-intensive Web sites
lies in addressing the latency reduction of pages produced
by the site. A system for which every single page would
have to be constructed from scratch from the site's un-
derlying DBMS, would surely have very limited perfor-
mance and would de�nitively not scale very much. We
believe that adequate materialization strategies are manda-
tory to attain reasonable and scalable performance out of
data-intensive Web sites. Improving performance of data-

1http://caravel.inria.fr/Eprototype WEAVE.html.

intensive Web sites through data materialization has so far
been addressed in two ways: (i) materializing the results of
frequently asked SQL queries [13], (ii) selectively material-
izing pages on the Web server [22]. Although both strate-
gies perform well under certain circumstances, both su�er
from lack of generality. The bottlenecks of data-intensive
Web sites have large degrees of variation. They typically
depend on the hardware and software environment, on the
database statistics, and on the Web site's structure and
access patterns [13]. We claim that there is no universal
evaluation strategy which is optimal for all Web sites and
which is independent of their particular parameters. Pro-
visioning data-intensive Web sites requires a management
system that is able to implement all the materialization
strategies, and which selects the optimal strategy on a case-
by-case basis according to the characteristics of the given
Web site.

Weave o�ers a high-level language for Web site speci�-
cation, and supports an innovative site architecture that
is based on a 3-tier customizable cache system. The
cache system can cache database data, XML fragments and
HTML �les, supporting data materialization at various lev-
els. Data materialization is further tailored according to
the database characteristics, Web site size, data freshness
and response time constraints, and user access patterns.
Before going into the particular solution of Weave, Sec-
tion 2 discusses general issues related to the speci�cation
and implementation of data-intensive Web sites. Section 3
describes the particular solution adopted in the Weave sys-
tem, describing the system's key elements for the easy con-
struction of Web sites running optimal data materialization
strategies. Section 4 discusses the experiments we have run
so as to assess the bene�ts of Weave, analyzing the per-
formance of a Weave Web site derived from the TPC/D
benchmark database2. Section 5 then compares our solu-
tion with related work. Finally, Section 6 concludes.

2 Building Declarative Data-Intensive
Web Sites

The general architecture of declarative data-intensive Web
site management systems can be summarized by the fol-
lowing �ve fundamental principles:

1. The data content of the Web site is extracted from a
(not necessarily dedicated) DBMS. The database can
be either a primary database or the result of a data
integration process, virtual or materialized.

2. The speci�cation of the Web site is distinguished from
its implementation. By speci�cation of a Web site, we
mean the description of the site's HTML pages, which
must be separated from the code to be executed for
solving page requests.

3. The speci�cation of Web site's structure and content
is separated from that of the graphical presentation
of its pages. The former relates to the set of pages in
the Web site, the data content attached to each page
and the hyperlinks emanating from each page, while
the latter concerns the page's layout.

4. The structure and the data content of the Web site
are described in terms of a logical model. Many di�er-
ent models have been considered, most of them being
(naturally) based on the notion of graph.

2TPCD Benchmark. http://www.tpc.org.

5. The mapping between the raw data and the logical
model of the Web site is described via a declarative
view de�nition language.

Concerning the separation between the Web site's con-
tent from the graphical presentation, note that this ap-
proach is already globally accepted (at least in theory)
since the XML standard aims at isolating the data con-
tent of a Web site from the graphical presentation, usually
described as independent XSLT programs. Hence, in the
rest of the paper, we consider XML as the natural candi-
date language to describe Web site's structure and content
and ignore the other possible Web site models. In this con-
text, a Web site speci�cation is done in two steps. First,
the speci�cation of the mapping between the raw data (re-
lational in our case) and the Web site's logical model (XML
in our case) has to be given. This is equivalent to de�ning
an XML view over the relational data[12, 6]. Second, the
de�nition of the Web site graphical presentation is given
in terms of a set of XSLT programs.

2.1 Evaluation Strategies for Data-Intensive

Web Sites

An important question that we address in this paper is
whether it exists an optimal strategy for the evaluation of
HTML pages. A multitude of strategies may be applied,
ranging from purely dynamic to fully static evaluation.

Under a purely dynamic evaluation strategy, the Web
server triggers the generation of an XML fragment corre-
sponding to the requested page upon each request. In order
to produce the result, the appropriate parameterized SQL
queries have to be executed on the database, according
to the site speci�cation, and the result has to be pack-
aged in XML format. The XML fragment is then sent to
the HTML generator, which applies the appropriate XSLT
program and generates the �nal HTML �le. Under such an
evaluation strategy, the total waiting time for a complete
Web page can be decomposed as: (1) the network commu-
nication time, (2) the HTTP connection time, (3) the Web
application startup time, (4) the DBMS connection time,
(5) the SQL execution time, (6) the XML generation time
and (7) the HTML generation time. In the case of dynamic
evaluation of HTML pages from large databases, the entire
process can be unacceptably slow.

Various solutions have been proposed to reduce the
waiting time for a page in this context. Some solutions
focus on reducing or eliminating one of the above 7 costs.
For example, expensive CGI calls can be replaced by eÆ-
cient APIs, or servlets. Furthermore, most products avoid
systematic database connection through a pool of connec-
tions. However, to the best of our knowledge, no previous
work studied the ratio between the various components of
the response time and analyzed the real bottlenecks of such
a system. It is clear that understanding these ratios is a
mandatory step prior to considering any work on perfor-
mance improvement and that the ratios will in general vary
depending on the particular Web site. Hence, the local
solutions presented above only slightly reduce the perfor-
mance problem, but do not tackle completely the issues
raised in the dynamic evaluation of Web sites.

A more general solution, used by most existing prod-
ucts [22] and prototypes, relies on materializing HTML
pages. The materialization can be done either on the
y

or o�-line, before any user starts browsing. Despite good
response times, the static (o�-line) evaluation strategy has
several major drawbacks. First, it incurs signi�cant space
overhead, which can be even greater than duplicating the
entire database since the same data item may appear in
multiple pages. Furthermore, the same HTML template is
replicated for various pages. Second, propagating updates
from the database to the Web site is a serious problem
once the site has been materialized. Third, the material-
ization granularity (i.e. a page) is not always appropriate:
di�erent fragments in a page can have di�erent update fre-
quencies, and materializing at the page level imposes the
recomputation of the entire page, even if some parts of the
page did not change. Finally, the static approach cannot
always be applied since it cannot accommodate forms (i.e.
the page content depends on the values of some parameters
which are only known at runtime).

The solution proposed in [13] relies on the observation
that, in the case of pure dynamic evaluation, the parame-
terized queries issued from the Web server and executed on
the DBMS server share much of their computation, leading
to redundant work. The proposed solution is thus to cache
in the DBMS, the results of parameterized SQL computa-
tion, under the form of relational tables called cache func-
tions, and reuse the results for subsequent requests. This
approach has several advantages. First, if the SQL exe-
cution time is the dominant cost and if this cost is high,
there are signi�cant performance improvements. Second,
since the cached data and the raw data are under the con-
trol of the same DBMS, simpler update propagation mech-
anisms can be deployed. Third, it is possible to control the
granularity of the cached data, ranging from entire parame-
terized SQL queries to simpler sub-queries or combinations
of subqueries using outerjoins [13]. However, this solution
may alter the Web site's performance under certain con-
ditions. Since the cached data is under the control of the
DBMS, every cache action (e.g. search, insert, delete) ac-
cesses the DBMS via expensive SQL statements: using a
cache with a low hit ratio incurs a large penalty. The SQL
execution time is not always the most prominent cost in
evaluating a page and may even be negligible. In this case,
the overhead of caching tuples in the DBMS may outweigh
the performance improvement. Finally, another drawback
of this solution is a possible overload the DBMS server.

An alternative to the above solutions is to cache in-
termediate XML representations of data. Compared to
caching HTML �les, XML caching has the advantage of
storing less data. Moreover, XML representations allow for
carefully controlling the granularity of cached data, rang-
ing from complete pages to page fragments. For instance,
we can cache the name of a product, which is somehow sta-
ble, but not its price which varies a lot over time. However,
caching XML data instead of HTML �les does not exhibit
a clear advantage in terms of space saving when the ra-
tio between the size of the XML representation and that
of the corresponding HTML �le is close to 1. Under such
conditions, caching XML data would not bring any bene-
�t in terms of space saving, and would additionally incur
runtime overhead for converting XML data into HTML on
the
y. Compared to DBMS caching [13], caching XML
has the advantage of eliminating (in the case of a hit) the
costs of database connection, SQL execution, and of gen-
erating XML data. This technique also allows to reduce
the load generated on the DBMS by the Web server. On

the other hand, update propagation from the DBMS to the
cached data is made more diÆcult (e.g. [21]).

From the above, we can conclude that there is no uni-
versally good solution for improving the performance of a
data-intensive Web site. Each of the above materializa-
tion techniques (i.e. HTML, XML or DB) will be e�ective
under certain circumstances and disastrous under others.
It is thus mandatory for data-intensive Web sites to
exi-
bly support the materialization at all levels: HTML, XML,
and DB data. Notice that better response times may be
o�ered to clients by pipelining the operations required to
produce an HTML page from a query. Unfortunately, de-
spite some encouraging attempts [20, 26], streaming com-
ponents are not yet available for XML and HTML gen-
eration. In addition, even when such components will be
available, this will not solve the overall performance prob-
lem of data-intensive Web sites, which requires accommo-
dating the high database and server load. Caching remains
here a key solution to address this scalability issue.

2.2 Materialization Strategies

An agreed upon solution for reducing the cost involved in
the pure dynamic evaluation of database-generated Web
pages seems to be data materialization, reusing intermedi-
ate results of various computations to answer subsequent
queries. In order to deploy such a solution, the following
issues must be addressed.

1. What kind of data should be materialized?
As we showed before, data go through various levels of ab-
straction between the data producer (i.e. relational tables)
and the data consumer (i.e. HTML �les). Hence, there
is a choice of materializing either the result of relational
queries (as tables on a DBMS), either XML fragments or
directly HTML �les.

2. When must materialization be performed?

Possible answers to this question are: (i) data items are
materialized proactively, before users start interacting with
the Web site, (ii) data items computed upon request are
cached, and reused for subsequent requests, (iii) data items
are prefetched according to their probability of being ac-
cessed.

3. Where should the materialized intermedi-
ate results be placed for e�ective performance im-

provement? Data items can be stored within part or all
of the following nodes: database server, Web server, proxy,
and Web client (in the case of XML fragments and HTML
�les). Caching a particular data item among eligible nodes
then depends both on behavioral information (e.g. access
pattern) and on the processing capability of the given node
(e.g. Web clients will not support XML generation in gen-
eral).

4. How are updates from the database propa-
gated to the materialized data? Updates can be prop-
agated in either: (i) a push fashion, i.e. an update to the
database immediately triggers the deletion or the recalcu-
lation of the materialized data invalidated by the update,
or (ii) a pull fashion, i.e. the materialized data items are
periodically checked for freshness, and the appropriate ac-
tion is performed upon inconsistency. There are several
comments to make about push vs. pull strategies. First,
only the push strategy can guarantee up-to-date data de-
livery. In the case of a pull update propagation strategy,

the Web site may eventually deliver outdated data, and
this may be unacceptable for certain Web sites, while it
can be clearly acceptable for others. On the other hand, a
push strategy can only be deployed at the expense of using
a costly trigger mechanism. Moreover, the applicability of
the push strategy is drastically limited if the data is mate-
rialized outside the Web server itself, due to the knowledge
that is required (e.g. which data items are materialized and
where) [21].

5. Which particular data items must be mate-

rialized and which ones must be computed upon
request? Intuitively, the data items (i.e. tables, XML
fragments or HTML �les) satisfying the following three
criteria are good candidates for materialization: (i) they
are expensive to compute, (ii) they do not require frequent
recomputation for update propagation, and (iii) they are
requested with high frequency. For the other data items, it
is not obvious that the gain obtained from materialization
outweighs the overhead.

The right answer to the above questions depends on the
database itself, the Web site size, freshness and response
time constraints, the Web site usage patterns, and, last
but not least, on the particular hardware and software en-
vironment. The problem that we are addressing here is
how to build a management system that can support all
the above evaluation strategies and therefore being useful
in most situations.

3 The Weave Web Site Management
System

Weave has been designed to support the evaluation strate-
gies described in the previous section. The Web site spec-
i�cation is given in Weave as: (i) a WeaveL program that
describes the site's structure and content, and (ii) a set
of XSLT templates that describe the site's graphical pre-
sentation. The WeaveL program describes abstractly the
site's pages, the data attached to each type of page, and
the links between pages. In the absence of any additional
information, the speci�ed Web site is interpreted by Weave
as being purely dynamic, and is executed as such. For the
cases where complex materialization strategies are desired,
Weave o�ers an extension of WeaveL, called WeaveRPL,
which allows the speci�cation of complex runtime policies.
A runtime policy prescribes which data have to be materi-
alized and under which form, and how the updates are to
be propagated from the database to the materialized data,
etc. The Weave system includes all the necessary com-
ponents to deploy and interpret at runtime such complex
policies.

In this section we �rst detail Weave's declarative Web
site speci�cation. Subsequently, we describe the Weave site
architecture, the associated language for runtime policy
customization, and the current implementation of Weave.

3.1 Declarative Web Site Speci�cation using
WeaveL

A WeaveL program consists of a set of site class speci�-
cations. A site class models a collection of homogeneous
pages in a Web site (e.g., collections corresponding to pages
of customers or suppliers). Each page in the site can then

Root()

Suppliers() Customers()

CustomerNat(NK)

SupllierReg(RK) CustomerReg(RK)

SupplierNat(NK)

Supplier(SK) Customer(CK)

PartSupp(PK, SK)

customer

supplier

type part
CustSupp(CK, SK)

CustSuppBrand(CK, SK, PB)CustSuppType(CK, SK, PT) CustSuppPart(CK, SK, PK)

Order(OK)Part(PK)

order

partorder part

nation

part

customers

region

part

region

nation

region

suppliers

customersupplier

order

supplier

part

supplier

supplier

region

customer

brand

part

order

customer

Figure 1: The TPC/D site schema

be seen as an instance of a particular class, and identi�ed
and distinguished from the other instances by a set of items
from the underlying database (e.g. a page of a particular
customer can be identi�ed by the key of the customer in
the database). Hence, a page request handled by the Web
server must specify the class of the page that is requested
and zero or more parameter values, which uniquely identify
the content of the requested page.

In WeaveL, the speci�cation of each Web site class in-
cludes: (i) the declaration of the parameters identifying an
instance of the class, (ii) the SQL query whose result gives
all possible instances for the above parameters (describing
how to produce all the instances of that class), (iii) the
speci�cation of the data contained in an instance of the re-
spective class (i.e. the parameterized query that retrieves
this data from the database), (iv) the speci�cation of the
hyperlinks emanating from an instance of the respective
class (i.e. the database queries that have to be evaluated
in order to build the correct links between the pages) and
(v) the speci�cation of the forms embedded in the page.
Finally, in addition to the WeaveL program which gives
the site's XML view de�nition, a complete Web site spec-
i�cation consists of a set of XSLT programs, all instances
of a given class sharing the same XSLT.

Example 3.1 Suppose we want to produce a browsable
version of the data contained in the TPC/D benchmark.
The database contains information about products, cus-
tomers and client orders. The desired Web site is or-
ganized according to the hyperstructure represented in
Figure 1. There is a root page with two links to sup-
pliers (node labeled Suppliers()) and customers (node la-
beled Customers()). Both suppliers and customers are
grouped by geographical region (e.g., CustomerReg(RK)),
and within each region by nationality (e.g., Customer-
Nat(NK)). Suppliers and customers have further links to
detailed information about the orders, as depicted in Fig-
ure 1. For illustration, we give below the WeaveL speci�-
cation of the CustomerNat class. A Web page instance of
this class depends on a single parameter (i.e. the key in the
database of the given nation) and it contains (i) the name
of the particular nation and (ii) hyperlinks to all the pages
corresponding to customers in that nation. The mapping
between the attributes and the hyperlinks contained in an
instance of this class and data in the database is described
using (parameterized) SQL queries as follows.

de�ne class CustomerNat ($NK)
finstances using Q0 g
f
data nation name using Q1 ;
link customer to Customer($CK) using Q2 ;
g
de�ne query Q0 as select nationkey as $NK from Nation;
de�ne query Q1 as select name as nation name

from Nation where nationkey=$NK;
de�ne query Q2 as select custkey as $CK, name as anchor

from Customer where nationkey=$NK;

Given a page request (e.g. a particular binding for the
parameter $NK of the class CustomerNat), it is neces-
sary to �rst produce the XML fragment corresponding to
the respective Web page. In Weave, the XML Generator
has the task of evaluating the parameterized queries from
the WeaveL speci�cation and producing the correspond-
ing XML data. An important feature of the Weave XML
Generator is that it can be invoked with the request of
generating complete XML pages or only some fragments
of them. In the latter case the resulting fragment keeps
track of the missing pieces, which are computed on the

y when needed. The XML data produced in Weave ad-
here to a unique DTD/schema, which is independent of the
database schema and the structure of the Web site. For ex-
ample, the complete XML fragment describing the content
of the page identi�ed by the class CustomerNat and $NK=6
is the following:

<XML fragment id="CustomerNat 6 ">
<class> CustomerNat </class>
<parameter> 6 </parameter>

<data fragment name="nation name ">
<data value> France </data value>

<data fragment>

<link fragment name="customer ">
<link item>
<XML fragment id="Customer 402 ">

<class> Customer </class>
<parameter> 402 </parameter>

</XML fragment>
<anchor> Customer#000000402 </anchor>

</link item>
....

</link fragment>
</XML fragment>

3.2 Site Architecture

Declarative Web site speci�cation only worries about what
data will populate the Web site, and how the site is struc-
tured, but does not specify how the site is implemented.
This separation of concerns is important because it gives
the freedom of choosing the most adequate evaluation
strategy. In this subsection, we detail the Weave site archi-
tecture enabling customized data materialization (or run-
time policy); the next subsection details the WeaveRPL
language for the speci�cation of customization. The Weave
site architecture is based on the following main components
(see Figure 2):

- The scheduler has the task of interpreting the runtime
policy, and coordinating the behavior of the other
components. It receives HTTP requests and redirects

html xml xml
fragmentsfiles fragments

Interface

ManagerCache
DB

Interface

HTML

Cache Manager

Interface

XML

ManagerCache

HTML

Generator

repository
HTML

repository
XML

DBMS

Generator

XML

XSL
style sheets

HTTP Requests HTML Pages WeaveL/WeaveRPL
program

Scheduler

Interface

collecting
Tools

statistics

Figure 2: The architecture of the Weave system

them to the cache manager components out of which
data relating to a given page may be retrieved.

- The individual cache managers enforce the runtime
policy by handling data requests as forwarded by the
scheduler. They further undertake appropriate ac-
tions regarding environmental constraints (e.g. man-
agement of data replacement and of data consistency).
Environmental constraints are handled through the
signal of associated events (e.g. time set for a timer
has elapsed, maximum size set for a data container is
reached).

- The individual caches (or repositories), which actually
store the data and with which the cache managers in-
teract. Notice that there may be various caches re-
lated to a given manager, e.g., for scalability purpose.

- The XML generator is in charge of issuing queries to
the DBMS (including the DB cache) and producing
XML fragments.

- The HTML generator generates HTML pages from
XML fragments and XSLT programs.

- The statistics manager is in charge of storing and sum-
marizing the data describing the Web site's runtime
behavior. These data include: statistics about the
Web site's traces and access patterns, statistics about
the response times of the various Weave components
(e.g. XML generator, XML cache, HTML cache), and
statistics describing Weave caches usage (e.g. hit ra-
tios, maximum size).

Example 3.2 As an illustration of the interaction pat-
terns among Weave site components, consider a request
for a page whose associated data are asked to be cached
as both XML and HTML. The page is �rst searched for
within the HTML cache. If present, the page is simply
returned to the scheduler, which returns it as a result of
the HTTP request. If the page is absent from the HTML
cache, the corresponding XML fragment is sought within
the XML cache. If the fragment is present and corresponds
to the entire page, it is returned to the scheduler, which
computes the corresponding HTML page to forward it to
both the HTML cache manager and the initiator of the
HTTP request. Finally, if either the data is absent from
the XML cache or the data retrieved from the XML cache
corresponds to a subset of the page, the missing data is
requested to the XML generator. The XML generator fur-
ther requests the data to the DB cache manager, the data
being ultimately retrieved from the underlying database.
The retrieved data then serve computing the corresponding
XML fragment, which is processed in order to update the

XML and HTML caches and to service the HTTP request.
The above scenario illustrates the interaction among the
components of a Weave site when all three data reposito-
ries are involved. It is then quite easy to infer alternative
interaction patterns when only a subset of the caches is
involved.

So far, we have introduced Weave sites with respect to
the execution of a given runtime policy. The behavior of
Weave sites is dynamically customizable with respect to
the enforced runtime policy by taking as input WeaveRPL
policy speci�cations. When the runtime policy is to be
modi�ed (or initialized), the new policy is �rst delivered
to the scheduler, which distributes it among the Weave-
speci�c components according to their functionality (see
Figure 2).

3.3 Customizing runtime policies

Runtime policies speci�ed usingWeaveRPL give the behav-
ior of the three data caches with respect to environmental
constraints and data requests, which further implicitly de-
scribe the global algorithm that has to be followed in order
to solve HTTP requests. This behavioral speci�cation is
similar for the three types of caches, and decomposes in
three parts:

(1) The speci�cation of the data items that are subject
to materialization in each particular data cache. The
set of items that are subject to materialization in each
cache are logically grouped in a number of containers.
A container is the unit of storage management and
allows grouping together objects (i.e. tuples, XML
fragments or HTML �les) that have similar access and
evolution patterns. Containers enable �ne tuning of
data materialization and provide a convenient basis
for the physical distribution of caches. The de�nition
of a container describes in a declarative fashion the
items that are eligible for materialization in that con-
tainer. In the case of XML or HTML, the items are
identi�ed by the name of a site class together with
caching conditions upon its instances (e.g. parameter
value, instance size, access frequency or computing
time). In the case of database tuples, items are iden-
ti�ed by the name of a table and a set of key values.

(2) The global constraints over all the data items to be
cached in a given container. These constraints relate
to the items' size (size), age (age) and access frequency
(frequency).

(3) A set of Even-Condition-Action (ECA) rules, which
dictates the way the cache manager responds to var-
ious events (e.g. request for data, size over
ow, data
aging, etc). Events that are currently supported relate
to initialization (onInit), cache over
ow (onFull param-
eterized with the container size), aging (onTimer pa-
rameterized with the timer value). Conditions that
may be expressed are as for global constraints. Re-
garding supported actions, these include: prefetching
speci�ed data items within the cache (compute), re-
moving speci�ed items from the cache (remove), ap-
plying a given function to the cache content, e.g., for
data replacement (apply), and reinitializing the cache
content (reinit).

The above speci�cation of containers drives the behavior
of the scheduler when servicing HTTP requests. Given

an object request, the global scheduler knows from which
caches the object can possibly be retrieved, and how it
must route the request in order to solve it completely.

Example 3.3 The TPC/D site de�nition is now comple-
mented with the speci�cation of the associated runtime
policy. The speci�cation associated with the HTML cache
is given below.

Cache HTML:
f /* Container de�nition */

de�ne container contHTML as
select Part,
PartSupp(PK) where (PK < 100 and SK < 100),
CustSupp(PK, SK) where (size < 2KB and

frequency > 0.3);
/* Global constraints */
frequency > 0.2 and size < 10 KB;

/* ECA rules */
onInit compute PartSupp,

Part(PK) where PK < 100;
onTimer(5mn)

remove Part(PK) where (PK > 100 and
age > 30 mn);

onFull(200MB) remove all where size > 2KB;
g

The HTML cache contains a single container, which
stores instances of the site classes that are listed after the
select clause. Stored instances must have a size less than
10KB and an access frequency greater than 0.2. Further
constraints are set over instances of the PartSup and Cust-
Supp classes: instances of the former must have values for
PK and SK that are both less than 100, instances of the
latter must have a size that is less than 2KB and an ac-
cess frequency that is greater than 0.3. Upon initializa-
tion (handling of the onInit event), the HTML cache is fed
with the instances of the Part and PartSupp classes, which
meet the aforementioned global constraints over cached in-
stances. The content of the cache is refreshed every 5mn
using the onTimer event; stored instances of the Part class
whose value for PK is greater than 100 and whose age is
greater than 30mn are removed. When the cache is full
(space consumption greater than 200MB), all the stored
instances whose size is greater then 2KB are removed (see
handling of the onFull event). Speci�cation for the XML
cache follows.

Cache XML:
f /* Container de�nition */

de�ne container contXML as
select Supplier(SK):fragmentsfname, customerg
where SK < 100;

/* Global constraints */
frequency > 0.2 and size < 100 KB;

/* ECA rules */
onInit compute all;
onTimer(5mn) reinit;
onFull(50MB) apply LRU;

g

The XML cache also contains a single container, which
stores fragments of instances of the Supplier class whose
value for SK is less than 100. The stored fragments corre-
spond to parts of the HTML page that give the supplier's
name and list of customers. Upon initialization, the cache

is fed with all the instances that met the speci�ed condi-
tions until the cache is full. The cache is refreshed every
5mn by removing all the stored instances and recomputing
them (reinit action). When the cache is full, a traditional
LRU algorithm is applied for the replacement of the in-
stances.

Similarly to the way an XML (resp. HTML) cache holds
sets of XML fragments (resp. HTML �les) that are logi-
cally de�ned by predicates and physically grouped into con-
tainers, a DB cache holds sets of tuples that are logically
de�ned by predicates and physically grouped into tables.
The tuples can either belong to some materialized views,
or be part of function tables, which maintain the results of
parameterized queries (with their respective inputs) [13].
The DB cache speci�cation contains the de�nition of the
views and/or the cache functions as illustrated below, each
of them corresponding in our terminology to a single con-
tainer. Both the materialized views and the cache functions
are tables holding tuples. The di�erence resides in when
the content of the tables is computed: statically (onInit)
for the views and upon request (onRequest) for the cache
functions. Moreover, views are complete (i.e. they contain
all the tuples satisfying the given predicate), while cache
functions can contain only a subset of the tuples satisfying
the given predicate. Hence, both materialized views and
cache functions can be speci�ed using the same formalism
(i.e. same container de�nitions and same ECA rules) as for
the case of XML and HTML caches. More details about
the DB cache can be found in [13].

Cache DB:
f /* Container de�nition */

de�ne container CACHE FUNCTION as
select o.o custkey, l.l supkey, p.p partkey, p.p name,
p.p type, o.o orderdate, o.o orderkey, p.p brand

from LINEITEM l, ORDER o, PART p
where o.o orderkey = l.l orderkey and

p.p partkey = l.l partkey
input o custkey, l supkey;
/* ECA rules */

onRequest(CustomerSupplier($CK,$SK))
compute all

where o custkey=$CK and l supkey=$SK;
onTimer(30mn) remove all;

g
f /* Container de�nition */

de�ne container VIEW as
select o.o custkey, l.l supkey, l.l partkey, o.o orderdate,

o.o orderkey, l.l linenumber
from ORDER o, LINEITEM l
where o.o orderkey = l.l orderkey

input custkey, supkey;
/* ECA rules */

onInit compute all;
onTimer(24h) reInit;

g

To conclude this section we note that our �nal goal is to
o�er a system, which would analyze the declarative speci-
�cation and produce automatically the \optimal" runtime
policy. At this point, our system still requires a Web site
administrator to generate by hand the desired runtime poli-
cies. However, in order to help the administrator choosing
the best materialization strategy, Weave o�ers a powerful
testing and tracing component. For example, this com-
ponent analyses and summarizes the Web site execution

statistics, and highlights the potential performance prob-
lems, hence simplifying considerably the Web site admin-
istrator's task.

3.4 Prototype implementation

The Weave site architecture is highly modular, allowing
the use of o�-the-shelf components for most of the archi-
tecture elements but the Weave-speci�c ones, which are
the scheduler and the cache managers. All the Weave
site components, presented in Figure 2, are wrapped in
Java (JDBC is used for interfacing with the DBMS), us-
ing simple but powerful interfaces. Implementing Weave
then consists of providing implementations corresponding
to the component interfaces, together with the WeaveRPL
compiler. In the current Weave implementation, except
for the Weave-speci�c components, we have either reused
existing components when available (i.e. IBM LotusXSL
for the HTML generator, and IBM XML4J as part of the
XML generator, which we enriched for supporting the gen-
eration of XML fragments relating to part of a page), or
implemented in a quite trivial way some of the others (i.e.,
we use the underlying �le system for the HTML and XML
caches).

Particular attention has been devoted to the design and
implementation of the three cache managers. Weave con-
tains a single cache manager interface and a single cache
manager implementation, which proved to simplify a lot
Weave implementation. The three data repositories hold-
ing the materialized data share the same interface; chang-
ing the real data repository requires only to change the
implementation of this interface. This feature allows us,
for example, to experiment with several XML repositories
(persistent DOM, Excelon and �les).

Notice that the speci�cation of XML views over rela-
tional databases and their eÆcient implementation, is a
distinct area of active research [26, 12, 6]. Although appli-
cable to the Web domain, the proposed solutions are not
speci�cally designed for it. In particular, they do not al-
low manipulating entire XML elements and/or fragments.
However, Weave is designed such that the XML Generator
can easily be replaced in the future when powerful and ef-
�cient such components become available. Finally, notice
that the current implementation of Weave supports only a
subset of all the materialization strategies that were dis-
cussed in Section 2. The main limitation concerns data
update propagation, currently o�ered only through a pull
model.

3.5 Weave on the Web

Up to this point, we have been concentrating on the use
of Weave for building sites at the Web server level. In
addition, we have presented an example of Weave site in-
carnations with exactly one instance of each type of cache
(e.g. DB, XML and HTML), all three caches being used
and further located on a single site. Unsurprisingly, Weave
has been designed to enable the deployment of sites with
di�erent con�gurations, in term of cache components and
their location over the various Web nodes (i.e. Web server,
proxy, client). We do support the distribution and replica-
tion of the Weave site's components over these nodes, and
the implementation of sites comprising only a subset of the
three caches. Among the bene�ts of Weave in this context,

Weave site components are valuable for coping with thin
Web clients (e.g. wireless PDAs), which are foreseen as fu-
ture prominent Web actors. Dedicated proxy caches may
exploit the XML fragments for the convenient customiza-
tion of Web pages. Due to the lack of space, we do not
discuss any further the usage of Weave in the overall Web
environment.

4 Experimentation

To measure the performance of various data materializa-
tion strategies, we built a test platform called WeaveBench
and performed various experiments. In the following, we
present the test platform and its con�guration, the exper-
iments and the performance results.

4.1 The WeaveBench test platform

We built our own test platform WeaveBench. WeaveBench
generates a load for testing Weave on a Web server by run-
ning one or more Web client processes on one or more client
computers. Each client process sends requests as fast as it
can receive data back from the server. Thus, it generates
a load much heavier than that of a single interactive user.
A single process manages the testing done by the client
processes. It starts the benchmark runs, each one by a dif-
ferent client process, and combines the performance results
into a single summary report.

WeaveBench considers a Web site derived from the
TPC/D database factor 1 with a database size of 1.2 GB
and 15 million pages. The Web site contains in average 5
SPJ queries per page, and no aggregate queries have been
used. Each client submits page requests based on a trace
�le that describes the pages of the TPC/D database. Thus,
we must generate a trace �le that captures a realistic work-
load of page accesses. In the experiments, each client sends
requests to the Web server according to a trace �le. All the
trace �les for a given run are generated based on the same
probability distribution, as follows. First, a workset of N
(N=10.000 in the current implementation) distinct pages
have been chosen from the entire Web site. In so doing,
the pages closer to the root of the Web site are considered
with a (slightly) higher probability. Second, C (C being
the number of clients) sequences of length M (M=1000
in the current experiments) of pages are chosen from the
workset, according to a Zipf distribution.

The database is stored in Oracle v8 on a dedicated Ul-
tra Sparc I machine (143MHz and 384MB of RAM), run-
ning SunOS Release 5.5. The cache global manager, the
three caches and the Web server, Apache v3.3.3, are all
on the same machine, a 300MHz Pentium with 520MB
of RAM, running Linux Release 6.1. We use the Apache
JServ servlet engine to run the cache global manager, which
we implemented as a servlet. Two other machines are used
to hold WeaveBench clients. Each machine, a 200MHz
Pentium with 96MB of RAM, ran about 1-50 clients in in-
crements of 10. All the machines in the test platform are
interconnected by a 10Mbps network that can be isolated
from other networks.

4.2 Experiments

We have run the following experiments: dynamic evalu-
ation, static3 evaluation, DB caching only, XML caching
only, HTML caching only, and mixed caching. Notice that
the dynamic evaluation is the worst case scenario where
client requests always yield access to the database, genera-
tion of the XML fragment and generation of the HTML
page. On the other hand, the static evaluation is the
\ideal" scenario where all the HTML �les have been stati-
cally generated and put in the HTML cache. This scenario
is unrealistic because of the high costs for generating (after
each change) and storing the �les. For DB caching, XML
caching, and HTML caching, the goal is to measure the
respective bene�t of caching data within the database, the
XML cache, and the HTML cache. Finally, mixed caching
is the realistic scenario where all three caches are used, each
one for a di�erent type of page according to the particular
parameters. The goal is to assess the bene�t of caching at
various levels (database, XML fragment, HTML �les).

The results are presented as a two-dimensional table
where each row corresponds to a page class (Customer,
Supplier, etc.) and gives the percentage of the various
execution times (wsconnect, queryexec, etc.) out of the
total Web server response time for the instances of that
class. The table is sorted by decreasing order of response
time. We highlighted in bold faces the components that
cause performance problems, i.e. the components with ex-
ecution times that are for more than 30% of the overall
processing. All results are shown for 1 client generating
500 page requests and in the absence of data updates. Ex-
periments with up to 50 clients showed large degradations
of the HTML generation time. This is mainly due to the
fact that existing XSLT processors consume large amounts
of memory and do not scale properly. These results sug-
gest that Web site architectures based on XML and XSLT
can be used in real applications only when better XSLT
processors will be available. However, there is no doubt
that this will be the case in the future since eÆcient XSLT
processing is receiving signi�cant attention.

4.3 Performance results

Dynamic pages. Table 1 shows the results when there
is no caching. The average response times are between
15 s4 and 300 ms. For page classes Customer, Supplier,
CustSup, CustSuppPart and CustSuppBrand, the query ex-
ecution time dominates because the queries involve joins
with large tables. For page classes CustomerNat and Sup-
plierNat, the XML and HTML generation times dominate
because the queries are simple but produce a large amount
of data. For the other page classes, the response time drops
to 500 ms and below, and is divided between theWeb server
connection and the HTML generation. These page classes
need not be optimized and, thus, they are not shown in the
experiments results.

Precomputed pages. Table 2 shows the results when
the HTML �les have been statically generated. Thus, the
only relevant execution times are those for connecting to

3In this experiment, all the Web pages have been precom-
puted. However, they are still served through the Weave appli-
cation, and not by the Web server directly from the �le system.

4The large response time can be explained by the hardware
con�guration used for the experiments.

page class wsconnect(%) queryexec(%) xmlgen(%) htmlgen(%) resptime(ms) size(KB)
Customernat 1.52 0.81 44.36 53.32 15202.34 660
CustSupp 1.84 97.38 0.04 0.74 12530.95 2
CustSuppBrand 1.85 96.73 0.05 1.37 12459.98 2
CustSuppType 1.91 96.57 0.05 1.47 12063.53 2
Supplier 2.30 82.96 6.36 8.38 10044.03 100
CustSuppPart 2.52 96.51 0.06 0.92 9160.41 2
PartSupp 8.23 88.40 0.28 3.09 2802.67 1
Suppliernat 22.30 3.63 25.78 48.29 1034.73 60
Customer 30.26 43.80 6.73 19.21 762.52 15

Table 1: The results of the dynamic evaluation

page class wsconnect(%) transftime(%) resptime(ms)
Customernat 0.35 99.65 3027.30
Supplier 3.30 96.70 323.60
Suppliernat 4.87 95.13 219.04
Customer 31.12 68.88 34.30
CustSuppBrand 70.22 29.78 15.20
CustSuppType 70.65 29.35 15.11
CustSuppPart 73.37 26.63 14.55
CustSupp 77.46 22.54 13.78
PartSupp 78.21 21.79 13.65

Table 2: The results of the static evaluation

the Web server and transferring the HTML �les to the
client (transftime). Response times are optimal and are
between 3 s and 13 ms for the most expensive pages. For
page classes of larger HTML size (CustomerNat, Supplier,
SupplierNat and Customer), the time to transfer the HTML
�les dominates. For the others (2 KB and below), the Web
server connection time dominates and the response time
gets quite small.

DB caching. Table 3.a shows the results with DB
caching only. We have used three cache containers: one for
pages of class Customer only, one for pages of class Supplier
and PartSupp and one for pages of class CustSupp, Cust-
SuppPart, CustSuppType and CustSuppBrand. The selection
of these containers is close to optimal and was found after
several trials. No cache was used for the other page classes
because the number of pages or the locality of reference are
low. Thus, the results are not shown for those because they
are the same as in Table 1. For pages of class CustSupp,
CustSuppPart, CustSuppType and CustSuppBrand, the im-
provement in response time is quite signi�cant (factor 11
or more) The response time for pages of class Supplier has
been improved by 2.4. However, that for pages of class
PartSupp has been worsened by a factor 1.5 because the
hit ratio does not compensate for the cost of inserting tu-
ples in the container.

XML caching. Table 3.b shows the results with XML
caching only. In our con�guration, the XML cache takes
memory away from the Web server. XML caching essen-
tially improves on query execution time and XML gen-
eration time. For page classes with a good hit ratio
(CustSuppType, CustSupp, CustSuppBrand, CustSuppPart,
Supplier and PartSupp), the response time can be improved
by a factor between 3 and 7. For the other page classes,
there is either small improvement or slight degradation due
to competing memory access by the Web server. Note that
our implementation of an XML cache could be improved by
using a persistent XML store. Compared to DB caching,
the improvement is not as good mainly because of the rel-
atively high memory consumption.

HTML caching. Table 3.c shows the results with
HTML caching only. HTML caching essentially improves
on HTML generation time, in addition to the improve-

ments of XML caching. The performance improvement
is slightly higher than that of XML caching because the
HTML cache consumes less memory (all �les are stored on
disk). But the improvement is still not as good as that of
DB caching.

Mixed caching. Table 3.d shows the results with
a mixed strategy where we combine DB caching, XML
caching and HTML caching. For each cache, the decision
of what to cache and how was taken according to the ob-
servations made in separate experiments with either DB,
XML or HTML caching only. We use the DB cache for
pages of class CustSupp, CustSuppPart, CustSuppType and
CustSuppBrand. However, we use the XML cache for Sup-
plier and Customer pages. We cache only the fragments cor-
responding to the customers of a given Supplier and suppli-
ers of a given Customer. We assume that these fragments
are not frequently updated and worth being cached. The
other fragments (i.e. parts of a Supplier and orders of a
Customer) are supposed to be frequently updated and so
should be built on demand. Finally, the other page classes,
except pages of class PartSupp which are computed on the

y without any caching, are statically generated and put in
the HTML cache. As a result, the performances are much
better than with each cache alone. The highest improve-
ments in response time are with the DB cache (factor 11 or
more). The improvement of precomputed pages (e.g., Cus-
tomerNat, SupplierNat, etc.) and of XML caching for pages
of classes Supplier and Customer is also signi�cant. The re-
sults for the uncached pages remain the same as in Table 1.
To summarize the results, Figure 3 gives the response times
of the di�erent caching strategies for our TPC-D Web site
and clearly shows that caching at di�erent levels is a good
strategy.

5 Related Work

There is a number of e�orts towards easing the construc-
tion of data-intensive Web sites through declarative spec-
i�cation [3, 11, 2, 9, 14, 7], and towards optimizing the
response times o�ered by such sites [13, 22]. However, to
the best of our knowledge, there is little work addressing
both issues in conjunction, which we consider as mandatory

page class wsconnect(%) queryexec(%) xmlgen(%) htmlgen(%) resptime(ms)
a. Results of DB caching
PartSupp 5.42 93.50 0.18 0.89 4244.72
Supplier 5.64 58.12 16.30 19.93 4080.14
CustSupp 26.78 69.08 0.53 3.62 859.64
CustSuppPart 28.70 65.86 0.67 4.78 802.09
CustSuppBrand 30.22 62.20 0.71 6.88 761.79
CustSuppType 34.74 56.94 0.78 7.54 662.60
Customer 38.26 35.57 8.63 17.54 601.61
b. Results of XML caching
Customernat 3.45 0.36 22.18 74.00 7337.22
CustSuppType 8.02 89.27 0.07 2.64 3157.17
CustSupp 8.37 90.57 0.07 0.01 3025.36
CustSuppBrand 8.79 89.58 0.07 1.55 2880.49
CustSuppPart 10.01 88.39 0.10 1.50 2528.84
Supplier 13.7 21.65 18.09 46.53 1843.35
Suppliernat 28.44 1.47 16.67 53.42 890.21
Customer 60.27 9.46 5.82 24.45 420.05
PartSupp 68.50 20.83 0.91 9.76 369.61
c. Results of HTML caching
Customernat 3.33 0.38 23.40 72.89 7517.07
CustSuppType 8.16 91.02 0.07 0.75 3071.73
CustSupp 8.62 90.80 0.06 0.51 2905.92
CustSuppBrand 9.20 89.92 0.07 0.80 2723.02
CustSuppPart 10.96 88.10 0.10 0.84 2286.69
Supplier 13.46 24.24 18.51 43.79 1862.03
Suppliernat 29.01 1.53 16.70 52.76 863.83
PartSupp 46.33 49.66 0.61 3.39 540.91
Customer 62.51 10.66 6.10 20.73 400.92
d. Results of mixed caching
Customernat 8.07 0.00 0.00 91.93 3010.50
PartSupp 8.84 89.55 0.29 1.32 2747.78
Supplier 11.63 25.95 18.19 44.24 2090.05
CustSupp 29.69 66.01 0.57 3.73 818.44
CustSuppPart 30.77 63.83 0.62 4.78 789.89
CustSuppBrand 32.02 60.83 0.69 6.46 758.88
CustSuppType 39.82 50.23 0.87 9.08 610.32
Customer 52.83 6.71 7.57 32.89 460.02
Suppliernat 97.51 0.00 0.00 2.49 249.10

Table 3: Results of the dynamic materialization strategies

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

Customernat CustSupp CustSuppBrd CustSuppType Supplier CustSuppPart PartSupp Suppliernat Customer

Page classes

R
e
s
p
.
tim

e
 (

m
s
)

Dynamic evaluation DB caching XML caching HTML caching Static evaluation Mixed caching

Figure 3: Comparison of di�erent caching strategies

for the e�ective deployment of data-intensive Web sites.
In this context, the work proposed in [13] exploits declar-
ative Web site speci�cations for data caching and looka-
head computation within the database system according

to the users' access patterns and the update frequency of
the data items. This improves the performance of handling
database queries, allows for eÆcient update propagation,
and enables caching of data that are shared among various
pages. However, this solution addresses only DB caching,
which has been shown to be valuable only in certain cir-
cumstances.

Related work originates from research results in the Web
area, which have been investigating ways to overcome the
performance penalty caused by uncacheable dynamic ob-
jects. Solutions have been proposed at the level of proxy
and server caches. Weave shares common ideas with some
of the solutions proposed for proxy caches. In a way simi-
lar to combining XML fragments with XSLT programs, the
proposal of [10] argues for dividing dynamic objects into a
static part (or template) and a dynamic part. Retrieval of
the former may then bene�t from caching while retrieval
of the latter leads to Web server access. In this way, the
performance cost of accessing a dynamic object is reduced
to the minimum. A more general solution is the introduc-
tion of cache applets [5] which customize the caching policy
for each document. Cache applets enable Web servers to
attach computation with Web objects, which may be con-
veniently exploited by proxy caches (e.g. the proxy cache
may request the server only for the document part that

is actually dynamic). Close to this work is the proposal
of [4], which introduces the CacheL language for customiz-
ing cache management policies according to the speci�cs
of accessed documents and/or services. Regarding proxy
cache management, Weave o�ers features close to the above
solutions. Weave additionally deals with the improvement
of the Web server latency, which is not addressed by the
above work. This aspect is mandatory since, in the case
of query processing, the load o�ered to the Web server
remains unchanged and hence still requires adequate man-
agement at the server level for e�ective performance im-
provement.

Caching of dynamic objects at the level of Web servers
has been investigated in [21], which introduces an algo-
rithm for eÆcient update propagation to caches. It is a �rst
step towards improving Web performance when handling
database queries. However, it is aimed at a speci�c ser-
vice, i.e., the 1998 Olympic Game Web site. In particular,
the targeted service allowed for storing in memory all the
dynamic pages without over
ow, yielding a cache hit rate
close to 100% without applying a replacement algorithm.
This assumption cannot be made for all the Web servers
interfacing with databases, especially data-intensive Web
sites. Furthermore, this solution is a very speci�c com-
ponent of the entire Web site, which may easily be inte-
grated within Weave sites given their architectural modu-
larity. On the other hand, our solution is general, providing
methods and tools for the easy design, implementation, de-
ployment, and maintenance of eÆcient data-intensive Web
sites.

Close to the Weave system are products that aim at
easing the development of Web-based applications. In par-
ticular, we �nd Microsoft Active Server Pages [19], and
Sun JavaServer Pages [18] that are component-based ar-
chitectures o�ering a number of base components to build
Web servers delivering dynamic pages. However, it is up
to the developer to tailor the site's implementation by
providing the needed additional components. The IBM
Websphere [15] and ColdFusion [16] are Web application
servers that ease the development of Web sites through the
provision of powerful base components for HTML caching,
database access, and scheduling. However, customization
of the Web site's runtime policy is less
exible than in
Weave and is disseminated in the implementation of the
various components composing the site. This alters the
ease of speci�cation and maintenance of the caching poli-
cies; it also diminishes the chances that such caching poli-
cies will be generated automatically in the future.

Dynamai [17] is a con�gurable cache allowing caching
dynamic documents. Dynamai sits in front of a site's Web
application and intercepts HTTP requests. If a request
comes in for content not yet in the cache or that Dyna-
mai cannot cache, Dynamai passes the request to the Web
server, caching the response in the �rst case and ignoring
it in the second case. Dynamai allows the site adminis-
trator to identify cache-able dynamic content, declare the
events that may result in changes to the content, and, no-
tify the cache when these events occur. Weave is close to
Dynamai from the standpoint of o�ering support for the
e�ective caching of dynamic objects. However, Weave is a
superset of this product in that it is not only a caching tool,
but also provides a framework for the speci�cation of data-
intensive Web sites. We believe that a global knowledge of
the data supply chain (i.e. from the data producer all the

way to the data consumer) is needed in order to derive the
appropriate caching policy. By ignoring the source of the
data and the way the Web site is generated only limited
solutions can be found.

Finally, three other systems explore issues that nicely
complement our work. In [7] the authors propose a high
level Web site speci�cation model, more powerful then the
one we currently support. However, they did not address
the performance problem and the supported Web evalu-
ation strategies are the simple ones: static and dynamic.
In [22] the authors address the optimization problem. For
each particular page, the disadvantages obtained from ma-
terialization are compared with the performance improve-
ments, thus deriving an \optimal" materialization strategy.
However, due to the large number of (parametrized) Web
pages the proposed optimization method cannot be easily
adapted to our context. The space of possible material-
ization policies examined in [22] is also signi�cantly more
restricted then the one we would like to explore. Finally,
in [1] the authors propose an interesting high level spec-
i�cation methodology for e-commerce applications based
on a rule-based language. These systems complement our
own; we believe that a complete solution for fast and high

quality Web application deployment can only be obtained
by an harmonious combination of these technologies.

6 Conclusions and Future Work

In a data-intensive Web site, returning a Web page may
require costly interaction with the database system (con-
nection and querying) to dynamically extract its content.
The database interaction cost adds up to the non-negligible
base cost of Web page delivery, thereby increasing much the
response time. Although useful, techniques for proxy and
Web server caches do not help reducing the Web latency in
this case since they work at the level of HTML pages. In
this paper, we have addressed the performance problem of
accessing dynamic Web pages in data-intensive Web sites.
This work has been done in the context of the Weave Web
site management system developed at INRIA.

Our approach relies on the declarative speci�cation of
the Web site through a logical model, and the customiza-
tion of the site's data materialization strategy based on
high-level speci�cation. The logical model of the Web site
is based on the XML graph data model. A site schema
then represents an XML view de�nition over a relational
database. Thus, we can manage the data of the Web site
at three levels: database, XML fragments, HTML �les.
In this context, we have proposed a customizable cache
system architecture and its implementation. Our solution
enables data caching at the various levels of data elabora-
tion within the Web site: database data, XML fragments
or HTML �les. In addition, Weave comes along with the
WeaveRPL language for specifying both theWeb site's con-
tent and customized data materialization within the site.
Given a site graph, cache management may be speci�ed at
a �ne grain by attaching caching actions to each site class.
Furthermore, the Web site being speci�ed abstractly, the
site's developer is relieved from dealing with low-level im-
plementation details, which further eases the site's mainte-
nance and evolution. Our solution has been illustrated
using a Web site derived from the TPC/D benchmark

database. Based on the result of our experiments, we have
assessed the performance of various caching strategies: dy-
namic pages (worst case), precomputed pages (best case),
DB caching, XML caching, HTML caching, and mixed
caching (combining DB, XML and HTML caching). The
results clearly show that a mixed strategy is generally op-
timal.

This paper has presented the building blocks of Weave,
which we have further implemented so as to assess our
approach. Work still needs to be done for further assess-
ment and improvement of Weave. As a short term ob-
jective, we are currently working on the enhancement of
the current Weave prototype with respect to optimizing
the performance of the components composing a Weave
site. As longer term research objectives, we plan to inves-
tigate four directions. First, we would like to eliminate a
strong limitation of our current system: the fact that our
declarative speci�cations can only model Web sites that
read data from the database, but not Web sites that up-
date a database. It is particularly important (especially
for e-commerce Web sites) to be able to model in a declar-
ative fashion data transfers in both directions, from the
database to the the Web site and vice versa. Supporting
the TPC-W benchmark is our next goal and this function-
ality will be required. The second interesting direction is to
consolidate the replication and distribution of the Weave
components on the proxies and/or on the clients. Finally,
it is important to be able to generate the run-time policies
automatically, based on the information extracted from the
execution statistics, from the database statistics and from
the Web site constraints in terms of data freshness and
response time.

Our ultimate, and ambitious, goal is to obtain a self
adaptive Web site management system which dynamically
changes its own run-time policies in response to the behav-
ior of a running system.

Acknowledgements: The authors would like to acknowl-
edge Cezar Cristian Andrei for his participation to the im-
plementation and evaluation of the Weave prototype.

References

[1] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and
T. Milo. Active views for electronic commerce. In Proc. of
the Int. Conf. on Very Large Data Bases (VLDB), 1999.

[2] G. Arocena and A. Mendelzon. WebOQL: Restructuring
documents, database and Webs. In Proc. of Int. Conf. on
Data Engineering (ICDE), 1998.

[3] P. Atzeni, G. Mecca, and P. Merialdo. To weave the Web. In
Proc. of the Int. Conf. on Very Large Data Bases (VLDB),
1997.

[4] J. F. Barnes and R. Pandey. Providing dynamic and cus-
tomizable caching policies. In Proc. of the USENIX Second
Symp. on Internet Technologies and Systems, 1999.

[5] P. Cao, J. Zhang, and K. Beach. Active cache: Caching
dynamic contents on the web. In Proc. of IFIP Int. Conf.
on Distributed Systems Platforms and Open Distributed
Processing (Middleware), 1998.

[6] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasun-
daram, E. Shekita, and S. Subramanian. XPERANTO:
Publishing object-relational data as XML. In Proc. of the
Int. Workshop on Web and Databases (WebDB), 2000.

[7] S. Ceri, Piero, Fraternali, and A. Bongio. Web modeling
language (WebML): a modeling language for designing Web
sites. In Proc. of the Int. World Wide Web Conf., 2000.

[8] B. Chidlovskii and U. M. Borgho�. Semantic caching of
Web queries. VLDB Journal, 9(1):2{17, 2000.

[9] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your me-
diators need data conversion. In Proc. of ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD), 1998.

[10] F. Douglis, A. Haro, and M. Rabinovich. HPP:
HTML macro-preprocessing to support dynamic document
caching. In Proc. of USITS'97 { USENIX Symp. on In-
ternetworking Technologies and Systems, 1997.

[11] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu.
Catching the boat with Strudel: Experiences with a Web-
site management system. In Proc. of ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD), 1998.

[12] M. Fernandez, W.-C. Tan, and D. Suciu. Silkroute : Trad-
ing between relations and XML. In Proc. of the Int. World
Wide Web Conf., 2000.

[13] D. Florescu, A. Levy, D. Suciu, and K. Yagoub. Opti-
mization of run time management of data intensive Web
sites. In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), 1999.

[14] P. Fraternali. Tools and approches for developing data-
intensive Web applications: a survey. ACM Computing
Surveys, 1999.

[15] http://www-4.ibm.com/software/webservers/appserv/.

[16] http://www1.allaire.com/Products/coldfusion/.

[17] http://www.dynamai.com/home.html.

[18] http://www.java.sun.com/products/jsp/index.html.

[19] http://www.microsoft.com/.

[20] Z. G. Ives, A. Y. Levy, and D. S. Weld. EÆcient eval-
uation of regular path expressions over streaming XML
data. Technical Report UW-CSE-2000-05-02, University
of Washington, 2000.

[21] A. Iyengar, J. Challenger, and P. Dantzig. A scalable sys-
tem for consistently caching dynamic Web data. In Proc.
of IEEE INFOCOM, 1999.

[22] A. Labrinidis and N. Roussopoulos. WebView materializa-
tion. In Proc. of ACM SIGMOD Int. Conf. on Manage-
ment of Data (SIGMOD), 2000.

[23] Q. Luo, J. F. Naughton, R. Krishnamurthy, P. Cao, and
Y. Li. Active query caching for database Web servers.
In Proc. of the Int. Workshop on Web and Databases
(WebDB), 2000.

[24] T. Nguyen and V.Srinivasan. Accessing relational
databases from the World Wide Web. In Proc. of ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD),
1996.

[25] L. Quan, L. Chen, and E. A. Rudensteiner. Argos: EÆcient
refresh in an XQL-Based Web caching system. In Proc. of
the Int. Workshop on Web and Databases (WebDB), 2000.

[26] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. EÆcient gen-
erating XML documents from relational data. In Proc. of
the Int. Conf. on Very Large Data Bases (VLDB), 2000.

[27] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the scale and performance of
cooperative Web proxy cahing. In Proc. of SOSP'99 { 17th
ACM Symp. on Operating Systems Principles, December
1999.

[28] K. Yagoub, D. Florescu, V. Issarny, and C. Andrei. Build-
ing and customizing data-intensive Web sites using Weave.
In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), 2000. (software demonstration).

