On homework, you may discuss with other students in the course about how to solve a problem, but the write-up should be your own. You must include the names of any students you consulted with. Give credit where credit is due.

1. (8 pts) Define exchange\((a_1a_2 \ldots a_{n-1}a_n) = a_n a_2 \ldots a_{n-1} a_1 \) (swap first and last character) and exchange\((L) = \{ v \mid v = \text{exchange}(w) \text{ for some } w \in L \} \). Show that the family of regular languages is closed under exchange.

For example, if \(abbcc \) is in \(L \), then \(cbbca \) is in \(\text{exchange}(L) \).

2. (12 pts) Prove the following languages are not regular by using the pumping lemma. Show all steps.

(a) \(L = \left\{ a^n b^k \mid n > 0, n \leq k \right\} \)

(b) \(L = \left\{ a^n b^p c^k \mid n > p + k, n > 0, p > 0, k > 0 \right\} \)

(c) \(\Sigma = \{ a, b, c \}, \quad L = \left\{ w \in \Sigma^* \mid n_a(w) \neq n_b(w) \right\}, \) where \(n_x(w) \) means the number of times \(x \) appears in \(w \).

3. (8 pts) Prove that the following languages are NOT regular by using closure properties. Show all steps.

(a) \(L = \left\{ a^n b^p c^k \mid n = p + k, n > 0, p > 0, k > 0 \right\} \)

(b) \(\Sigma = \{ a, b, c \}, \quad L = \left\{ w \in \Sigma^* \mid n_a(w) \leq n_c(w), 0 \leq n_b(w) < n_a(w) + n_c(w) \right\}, \)

where \(n_x(w) \) means the number of times \(x \) appears in \(w \).

4. (9 pts) Write a CFG for each of the following languages.

(a) \(L = \left\{ a^n b^p c^m \mid n > p + m, p > 0, m \geq 0 \right\} \)

(b) \(L = \left\{ a^n b^p c^m \mid n = p + m, p > 0, m \geq 0 \right\} \)

(c) \(L = \left\{ a^n b^p c^m \mid p = n + m, p > 0, m \geq 0 \right\} \)