Definition: A language \(L \) is \textit{recursively enumerable} if there exists a TM \(M \) such that \(L = L(M) \).

Enumeration procedure for recursive languages

To enumerate all \(w \in \Sigma^+ \) in a recursive language \(L \):

- Let \(M \) be a TM that recognizes \(L, L = L(M) \).
- Construct 2-tape TM \(M' \)
 - Tape 1 will enumerate the strings in \(\Sigma^+ \)
 - Tape 2 will enumerate the strings in \(L \)
 - On tape 1 generate the next string \(v \) in \(\Sigma^+ \)
 - simulate \(M \) on \(v \)
 - if \(M \) accepts \(v \), then write \(v \) on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all $w \in \Sigma^+$ in a recursively enumerable language L:

Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$)
- Run M for one step on w_k
 - Run M for two steps on w_{k-1}.
 - ...
 - Run M for k steps on w_1.
- If any of the strings are accepted then write them to tape 2.

Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

- S is countable, so it’s elements can be enumerated.

 $S = \{s_1, s_2, s_3, s_4, s_5, s_6, \ldots\}$

 An element $t \in 2^S$ can be represented by a sequence of 0’s and 1’s such that the ith position in t is 1 if s_i is in t, 0 if s_i is not in t.

 Example, $\{s_2, s_3, s_5\}$ represented by

 Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots\}$ represented by

 Suppose 2^S countable. Then we can enumerate all its elements: t_1, t_2, \ldots.

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.
 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$
 Enumerate all TM’s over Σ:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>aaaa</th>
<th>aaaaa</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(M_1)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \overline{L} are both RE, then L is recursive.

Proof:

- There exists an M_1 such that M_1 can enumerate all elements in L.
- There exists an M_2 such that M_2 can enumerate all elements in \overline{L}.
- To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \overline{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L. Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:
Definition A grammar G=(V,T,S,P) is unrestricted if all productions are of the form

\[u \to v \]

where \(u \in (V \cup T)^+ \) and \(v \in (V \cup T)^* \)

Example:
Let \(G=(\{S,A,X\},\{a,b\},S,P) \), \(P=\)

\[
\begin{align*}
S & \to bAaaX \\
bAa & \to abA \\
AX & \to \lambda
\end{align*}
\]

Example Find an unrestricted grammar G s.t. \(L(G)=\{a^n b^n c^n | n > 0\} \)

G=(V,T,S,P)
V=\{S,A,B,D,E,X\}
T=\{a,b,c\}
P=\)

1) \(S \to AX \)
2) \(A \to aAbc \)
3) \(A \to aBbc \)
4) \(Bb \to bB \)
5) \(Ba \to D \)
6) \(Dc \to cD \)
7) \(Db \to bD \)
8) \(DX \to EXc \)

There are some rules missing in the grammar.

To derive string aaabbccccc, use productions 1,2 and 3 to generate a string that has the correct number of a’s b’s and c’s. The a’s will all be together, but the b’s and c’s will be intertwined.

\[
S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcX \Rightarrow aaaBbcbcX
\]
Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

- List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G).

Proof:

- L is recursively enumerable.
 ⇒ there exists a TM M such that L(M)=L.
 M = (Q, Σ, Γ, δ, q₀, B, F)
 q₀w ⊢ _ x₁q_f x₂ for some q_f ∈F, x₁, x₂ ∈ Γ*
 Construct an unrestricted grammar G s.t. L(G)=L(M).
 S ⇒ w

Three steps

1. S ⇒ B...B♯x₁q_f yB...B
 with x,y ∈ Γ* for every possible combination
2. B...B♯x₁q_f yB...B ⇒ B...B♯q₀wB...B
3. B...B♯q₀wB...B ⇒ w
Definition A grammar G is *context-sensitive* if all productions are of the form

$$ x \rightarrow y $$

where $x, y \in (V \cup T)^+$ and $|x| < |y|$.

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $L = L(G)$ or $L = L(G) \cup \{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $L = L(M)$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M) = L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.