Section: Turing Machines - Building Blocks

1. Given Turing Machines M1 and M2

Notation for

- Run M1
- Run M2

\(\text{M1} \quad \text{M2} \)

\[z;z,R \quad z;z,L \]

\(z \) represents any symbol in
2. Given Turing Machines M1 and M2

M1

\[\rightarrow S \quad H \]

M2

\[\rightarrow S' \quad H' \]

\[\rightarrow M1 \xrightarrow{x} M2 \]

\[\rightarrow S \quad H \xrightarrow{x;R} z;L \quad S' \quad H' \]

\[z \text{ represents any symbol in} \]

\[x \text{ is an element of} \]
3. Given Turing Machines M1, M2, and M3

x is an element of

y is any element except x from

z is any element from
More Notation for Simplifying Turing Machines

Suppose \(\Gamma = \{a,b,c,B\} \)

- \(z \) is any symbol in \(\Gamma \)
- \(x \) is a specific symbol from \(\Gamma \)

1. \(s \) - start
2. \(R \) - move right
3. \(L \) - move left
4. \(x \) - write \(x \) (and don’t move)
5. \(R_a \) - move right until you see an \(a \)
6. \(L_a \) - move left until you see an \(a \)

7. \(R_{\neg a} \) - move right until you see anything that is not an \(a \)

8. \(L_{\neg a} \) - move left until you see anything that is not an \(a \)

9. \(h \) - halt in a final state

10. \(\rightarrow \{ a, b \} \rightarrow w \)

If the current symbol is \(a \) or \(b \), let \(w \) represent the current symbol.
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$. If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb
input: ba, output: ba
What is the running time?
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$, $|w| > 0$

For each a in the string, append a b to the end of the string.

input: $abbabb$, output: $abbabbbb$

The tape head should finish pointing at the leftmost symbol of w.

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function \(f: D \rightarrow R \) is a TM \(M \), which given input \(d \in D \), halts with answer \(f(d) \in R \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{align*}
\text{start with:} & \quad 111 + 1111 \\
\uparrow & \\
\text{end with:} & \quad 11111111 \\
\uparrow &
\end{align*}
\]
Example: Copy a String, $f(w) = w0w$, $w \in \Sigma^*, \Sigma = \{a, b, c\}$

Denoted by C

- start with: abac
- end with: abac0abac

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

\[
\text{start with: aaBbabc}\ \\
\uparrow\\
\text{end with: aaBBbaca}
\]
Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: \[
\text{babcaBba}
\]

\[\uparrow\]

end with: \[
\text{bacaBBba}
\]

\[\uparrow\]

(similar to S_R)
Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, $f(x\times y) = x\times y$, x and y unary numbers. Assume $x, y > 0$.

start with: \[1111 \times 11\]

end with: \[11111111\]