1.1 What is a Compiler?

I. Translator

Definition:

\[
\text{program in } X \xrightarrow{\text{translator}} \text{program in } Y
\]

Examples:

<table>
<thead>
<tr>
<th>Source Language</th>
<th>Object Language</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level</td>
<td>High Level</td>
<td>preprocessor</td>
<td>ratfor → f77, m4, cpp</td>
</tr>
<tr>
<td>Assembly</td>
<td>Machine</td>
<td>assembler</td>
<td>as</td>
</tr>
<tr>
<td>High Level</td>
<td>Machine</td>
<td>compiler</td>
<td>g++, javac</td>
</tr>
<tr>
<td>Any</td>
<td>executes</td>
<td>interpreter</td>
<td>BASIC (often) c shell</td>
</tr>
<tr>
<td></td>
<td>immediately</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Preprocessor

\[
\text{for } i=1 \text{ to } n \text{ do} \\
(\text{stmts}) \\
\text{end for}
\]

\[
\downarrow
i = 1 \\
\text{while } (i<=>n) \text{ do} \\
(\text{stmts}) \\
i = i + 1 \\
\text{end while}
\]
II. Language Processing System

skeletal source program

↓

preprocessor

↓

source program

↓

compiler

↓

target (object) assembly program

↓

assembler

↓

relocatable machine code

↓

loader/link-editor

↓

absolute machine code

III. Compiler

program in high level \(\rightarrow\) compiler \(\rightarrow\) program in machine language X for X language Y
1.2 STRUCTURE OF A COMPILER

General Overview

Source Code

↓

Lexical Analysis

↓
tokens

Syntax Analysis

↓
parse trees

Symbol Table Management

Intermediate Code Generation

↓
intermediate code

Error Handling

↓
intermediate code

Code Optimization

↓
intermediate code

Code Generation

↓
Object Program
1.3 PHASES OF COMPILATION

1.3.1 Lexical Analysis (Scanner)

a. Purpose: Read the same program character by character grouping them into atomic units called “tokens.”

b. Tokens:

- depend on language and compiler writer
- Examples:

 | reserved words | if, for |
 | operators | +, −, <, = |
 | constants | 0, 4.89 |
 | punctuation | (,), [|
 | identifiers | sb, ch |

- treated as a pair: token.type and token.value
 - token type is a (mnemonic) integer
 - some tokens have no value

c. Example

if (x <= 0) x = y + z

when put through lexical analyzer produces:

<table>
<thead>
<tr>
<th>token</th>
<th>type</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>if</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>23</td>
<td>“x”</td>
</tr>
<tr>
<td><=</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>int constant</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>23</td>
<td>“x”</td>
</tr>
<tr>
<td>= assignment</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>23</td>
<td>“y”</td>
</tr>
<tr>
<td>+</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>23</td>
<td>“z”</td>
</tr>
</tbody>
</table>
d. How does one build a lexical analyzer?

- from scratch
- lex

e. Preview of Lex

- idea: tokens described by regular expressions
- basic syntax:
 - regular expression, action
- basic semantics:
 - if match regular expression, then do action.
- Example:

```c
%%
"if"  return(25);
"("   return(28);
[0-9]+ return(22);
```

f. Remarks

Besides returning token types and values, the lexical analyzer might

a) print error messages

b) insert identifiers in the symbol table

1.3.2 Syntax Analysis (Parsing)

a. Purpose: Accepts the sequence of tokens generated by the lexical analyzer, checks whether the program is syntactically correct, and generates a parse tree.

b. Syntax: formally described by a context free grammar.
c. Parse Tree

if ($x \leq 0$) $x = y + z$

Figure 2 is the parse tree for this statement.

d. How does one build a parser?

- from scratch
- using a parser generator such as yacc

1.3.3 Intermediate Code Generator

a. Purpose: Traverse the parse tree, producing simple intermediate code.

b. Three-Address Code:

Instructions:

1. id := id op id
2. goto label
3. if condition goto label
Example:

if (x<=0) x = x + z

\[\downarrow \]

if (x<=0) goto L1

goto L2

L1: x := y + z
L2:

1.3.4 Intermediate Code Generation

a. Purpose: Transform the intermediate code into “better” code.

b. Examples

1) Rearrangement of Code

\[
\text{if (x<0) goto L1} \quad \rightarrow \quad \text{if (x>0 goto L2}}
\]

\[
\text{if (x<0) goto L1} \quad \rightarrow \quad \text{if (x>0 goto L2}}
\]

L1: x = y + z
L2:

2) Redundancy Elimination

\[
\text{a = w + x + y} \quad \rightarrow \quad \text{T1 = x + y}
\]

\[
\text{a = w + x + y} \quad \rightarrow \quad \text{T1 = x + y}
\]

\[
\text{b = x + y + z} \quad \rightarrow \quad \text{b = T1 + z}
\]

3) Strength Reduction

\[
x^2 \quad \rightarrow \quad x \times x
\]

\[
\text{expensive} \quad \rightarrow \quad \text{cheap}
\]

\[
\text{operator} \quad \rightarrow \quad \text{operator}
\]

4) Frequency Reduction

\[
\text{for (i=1; i<n; i=i+1) \{ } \quad \rightarrow \quad \text{T1 = sqrt(26)}
\]

\[
x = \text{sqrt}(26) \quad \rightarrow \quad \text{for (i=1; i<n; i=i+1) \{ }
\]

\[
\text{x = T1} \quad \rightarrow \quad \text{\}}
\]

\[
\text{\}}
\]
c. Remarks:

1) Main criteria for optimization is speed.

1.3.5 Code Generation

a. Purpose: Transform intermediate code to machine code (assembler)

b. Example: \(a = b + c \)

\[
\begin{align*}
\text{mov} & \quad b, R1 \\
\text{add} & \quad c, R1 \\
\text{mov} & \quad R1, a
\end{align*}
\]

c. Remarks

1) completely machine dependent whereas other phases are not

2) “register allocation” is the most difficult task

- idea - use registers (fast access) to avoid memory use (slow access)
- problem - only a finite number of registers (during intermediate code phase, one assumes an infinite number)

1.4 Symbol Table

a. Purpose: record information about various objects in the source program

b. Examples

- procedure - no. and type of arguments
- simple variable - type
- array - type, size

c. Use - information is required during

- parsing
- code generation
1.5 Error Handler

a. Errors - all errors should be

 - detected
 - detected correctly
 - detected as soon as possible
 - reported at the appropriate place and in a helpful manner

b. Purpose

 - report errors
 - “error recovery” - proceed with processing

c. Note: Errors can occur in each phase

 - misspelled token
 - wrong syntax
 - improper procedure call
 - statements that cannot be reached