Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

![DFA Diagram]

Turing Machine:

![Turing Machine Diagram]

Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms
Definition of TM

- Storage
 - tape
- actions
 - write symbol
 - read symbol
 - move left (L) or right (R)
- computation
 - initial configuration
 * start state
 * tape head on leftmost tape square
 * input string followed by blanks
 - processing computation
 * move tape head left or right
 * read from and write to tape
 - computation halts
 * final state

Formal Definition of TM

A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where

- Q is finite set of states
- Σ is input alphabet
- Γ is tape alphabet
- $B\in \Gamma$ is blank
- q_0 is start state
- F is set of final states
- δ is transition function
 $\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an 'a', then move into state p, write a 'b' on the tape and move to the right”.

TM as Language recognizer

Definition: Configuration is denoted by \vdash.

if $\delta(q,a) = (p,b,R)$ then a move is denoted

abaqabba \vdash ababpbbba
Definition: Let M be a TM, $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$. $L(M) = \{ w \in \Sigma^* | q_0 \xrightarrow{w} x_1 q_f x_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^* \}$

TM as language acceptor

M is a TM, w is in Σ^*,

- if $w \in L(M)$ then M halts in final state
- if $w \notin L(M)$ then either
 - M halts in non-final state
 - M doesn’t halt

Example

$\Sigma = \{a, b\}$

Replace every second ’a’ by a ’b’ if string is even length.

- Algorithm
Example:

$L = \{a^n b^n c^n | n \geq 1\}$

Is the following TM correct?

```
2;2,R
a;a,R
b;2,R
3;3,R
b;b,R
1;1,R
2;2,R
3;3,L
```

```
1;1, R
```

```
a;a,L
b;b,L
2;2,L
3;3,L
```

TM as a transducer

TM can implement a function: $f(w) = w'$

```
\begin{array}{c}
\text{start with: } w \\
\uparrow \\
\text{end with: } w' \\
\uparrow \\
\end{array}
```

Definition: A function with domain D is *Turing-computable* or *computable* if there exists TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ such that

$q_0 w \vdash^* q_f f(w)$

$q_f \in F$, for all $w \in D$.

Example:

$f(x) = 2x$

x is a unary number

```
\begin{array}{c}
\text{start with: } 111 \\
\uparrow \\
\text{end with: } 111111 \\
\uparrow \\
\end{array}
```
Is the following TM correct?

Example:

$L = \{ww \mid w \in \Sigma^+\}, \Sigma = \{a, b\}$