Section: Properties of Regular Languages

Example

$L = \{a^nba^n \mid n > 0\}$

Closure Properties

A set is closed over an operation if

$L_1, L_2 \in \text{class}$
$L_1 \text{ op } L_2 = L_3$
$\Rightarrow L_3 \in \text{class}$
$L_1 = \{ x \mid x \text{ is a positive even integer} \}$

L is closed under

- addition?
- multiplication?
- subtraction?
- division?

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

$$L_1 \cup L_2$$
$$L_1 \cap L_2$$
$$L_1 L_2$$
$$\overline{L_1}$$
$$L_1^*$$

are regular languages.
Proof (sketch)

L_1 and L_2 are regular languages

$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.

$L_1 = L(r_1)$ and $L_2 = L(r_2)$

$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$

\Rightarrow closed under union

$r_1 r_2$ is r.e. denoting $L_1 L_2$

\Rightarrow closed under concatenation

r_1^* is r.e. denoting L_1^*

\Rightarrow closed under star-closure
complementation:
 \(L_1 \) is reg. lang.
 \(\Rightarrow \exists \) DFA \(M \) s.t. \(L_1 = L(M) \)

Construct \(M' \) s.t.
 final states in \(M \) are
 nonfinal states in \(M' \)
 nonfinal states in \(M \) are
 final states in \(M' \)
 \(\Rightarrow \) closed under complementation
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = (Q \times P)$

δ':

$\delta'((q_i, p_j), a) = (q_k, p_l)$ if

$w \in L(M') \iff w \in L_1 \cap L_2$

\Rightarrow closed under intersection
Example:

Regular languages are closed under

reversal \(L^R \)
difference \(L_1 - L_2 \)
right quotient \(L_1 / L_2 \)
homomorphism \(h(L) \)

Right quotient

Def: \(L_1 / L_2 = \{ x \mid xy \in L_1 \text{ for some } y \in L_2 \} \)

Example:

\[
L_1 = \{ a^* b^* \cup b^* a^* \} \\
L_2 = \{ b^n \mid n \text{ is even, } n > 0 \} \\
L_1 / L_2 =
\]
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M=(Q,\Sigma,\delta,q_0,F)$ s.t. $L_1 = L(M)$.

Construct DFA $M'=(Q,\Sigma,\delta,q_0,F')$

For each state i do

Make i the start state (representing L'_i)

if $L'_i \cap L_2 \neq \emptyset$ then

put q_i in F' in M'

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \quad \Gamma = \{0, 1\}$$

- $h(a) = 11$
- $h(b) = 00$
- $h(c) = 0$

$h(bc) =$

$h(ab^*) =$
Questions about regular languages:
L is a regular language.

- Given L, \(\Sigma \), \(w \in \Sigma^* \), is \(w \in L \)?

- Is L empty?

- Is L infinite?

- Does \(L_1 = L_2 \)?
Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_1 = \{a^n b^m | n > 0, m > 0 \} = aa^* bb^*$
- $L_2 = \{a^n b^n | n > 0 \}$

Prove that $L_2 = \{a^n b^n | n > 0 \}$ is?

- Proof:
Pumping Lemma: Let L be an infinite regular language. \(\exists \) a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

\[
|xy| \leq m \\
|y| \geq 1 \\
xy^iz \in L \enspace \text{for all } i \geq 0
\]
To Use the Pumping Lemma to prove L is not regular:

- **Proof by Contradiction.**
 Assume L is regular.
 \[\Rightarrow L \text{ satisfies the pumping lemma.} \]
 Choose a long string w in L, $|w| \geq m$.
 Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \leq m$, $|y| \geq 1$ and $xy^iz \in L \ \forall \ i \geq 0$.
 The pumping lemma does not hold. Contradiction!
 \[\Rightarrow L \text{ is not regular. QED.} \]
Example $L = \{a^n c b^n | n > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$
Example \(L = \{ a^n b^{n+s} c^s | n, s > 0 \} \)

\(L \) is not regular.

- **Proof:**

 Assume \(L \) is regular.

 \(\Rightarrow \) the pumping lemma holds.

 Choose \(w = \)

 So the partition is:
Example $\Sigma = \{a, b\}$,
$L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

- Proof:
 Assume L is regular.
 \Rightarrow the pumping lemma holds.
 Choose $w =$
 So the partition is:
Example $L = \{a^3b^n c^{n-3} | n > 3\}$

L is not regular.
To Use Closure Properties to prove \(L \) is not regular:

- **Proof Outline:**
 Assume \(L \) is regular.
 Apply closure properties to \(L \) and other regular languages, constructing \(L' \) that you know is not regular.

 closure properties \(\Rightarrow \) \(L' \) is regular.
 Contradiction!

 \(L \) is not regular. QED.

Example \(L = \{a^3b^n c^{n-3} | n > 3\} \)

\(L \) is not regular.

- **Proof:** (proof by contradiction)
 Assume \(L \) is regular.
 Define a homomorphism \(h : \Sigma \rightarrow \Sigma^* \)
 \(h(a) = a \quad h(b) = a \quad h(c) = b \)

 \(h(L) = \)
Example \(L = \{a^nb^ma^m | m \geq 0, n \geq 0 \} \)

\(L \) is not regular.

- **Proof:** (proof by contradiction)
 Assume \(L \) is regular.
Example: \(L_1 = \{a^n b^n a^n | n > 0 \} \)

\(L_1 \) is not regular.