Announcements

- Homework #1 and course project will be assigned next Wednesday (January 22)
- Reading assignments in the “red book” will be photocopied and available outside my office (D327)
 - Codd paper is already there!
- There IS a recitation session this Friday (January 17) on E/R database design and review of relational algebra and design theory
- Instructor and TA office hours will be finalized this Wednesday

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
 - Set-valued attributes not allowed
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)
 - Duplicates not allowed
- Simplicity is a virtue!

Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CID</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS216</td>
<td>Advanced Database Systems</td>
</tr>
<tr>
<td>CPS230</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS214</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order)

Why did Codd call them “relations”?
Each n-tuple relates n elements from n domains, precisely in the mathematical sense of a “relation”

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to types and instances of types in a programming language

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)

- Instance
 - { {142, Bart, 10, 2.3}, {123, Milhouse, 10, 3.1}, ... }
 - { {CPS216, Advanced Database Systems}, ... }
 - { {142, CPS216}, {142, CPS214}, ... }
Relational algebra operators

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.

Selection
- Input: a table \(R \)
- Notation: \(\sigma_p (R) \)
 - \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example
- Students with GPA higher than 3.0
 \[\sigma_{GPA > 3.0} (\text{Student}) \]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

More on selection
- Selection predicate in general can include any column of \(R \), constants, comparisons such as \(=, \leq \), etc., and Boolean connectives \(\land, \lor \), and \(\neg \)
 - Example: straight A students under 18 or over 21
 \[\sigma_{GPA \geq 4.0 \land \text{age} < 18 \lor \text{age} > 21} (\text{Student}) \]
- But you must be able to evaluate the predicate over a single row
 - Example: student with the highest GPA
 \[\sigma_{\text{GPA} = \text{max(GPA in \text{Student})}} (\text{Student}) \]

Projection
- Input: a table \(R \)
- Notation: \(\pi_L (R) \)
 - \(L \) is a list of columns in \(R \)
- Purpose: select columns to output
- Output: same rows, but only the columns in \(L \)

Projection example
- ID’s and names of all students
 \[\pi_{\text{SID, name}} (\text{Student}) \]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>
More on projection

- Duplicate output rows must be removed
 - Example: student ages

\[\pi_{\text{age}} (\text{Student}) \]

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

- \(\text{Student} \times \text{Enroll} \)

A note on column ordering

- The ordering of columns in a table is considered unimportant (so is the ordering of rows)

That means cross product is commutative, i.e., \(R \times S = S \times R \) for any \(R \) and \(S \)

Derived operator: join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie_p S \)
 - \(p \) is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) if \(r \) and \(s \) satisfy \(p \)
- Shorthand for \(\sigma_p (R \times S) \)

Join example

- Info about students, plus CID’s of their courses

\[\text{Student} \bowtie_{\text{Student.SID} = \text{Enroll.SID}} \text{Enroll} \]
Derived operator: natural join

- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_L(R \bowtie S)$
 - L is the union of all attributes from R and S, with duplicates removed
 - ρ equates all attributes common to R and S

Natural join example

- $\text{Student} \bowtie \text{Enroll} = \pi_L(\text{Student} \bowtie \text{Enroll})$
 = $\pi_{\text{SID}, \text{name}, \text{age}, \text{GPA}, \text{CID}}(\text{Student} \bowtie \text{Enroll}.\text{SID} = \text{Enroll}.\text{SID})$

Union

- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicates eliminated

Difference

- Input: two tables R and S
- Notation: $R - S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Derived operator: intersection

- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for $R - (R - S)$
- Also equivalent to $S - (S - R)$
- And to $R \bowtie S$

Renaming

- Input: a table R
- Notation: $\rho_S(R)$, or $\rho_{S(A_1, A_2, \ldots)}(R)$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID’s of students who take at least two courses

\[Enroll \Join Enroll \]

\[\pi_{SID}(Enroll \Join Enroll) \]

\[\pi_{SID1} \]

\[\rho_{Enroll(SID1, CID1)} \]

\[\rho_{Enroll(SID2, CID2)} \]

\[Enroll \]

Summary of core operators

- Selection: \(\sigma_R \)
- Projection: \(\pi_L \)
- Cross product: \(R \times S\)
- Union: \(R \cup S\)
- Difference: \(R - S\)
- Renaming: \(\rho_{A_1, A_2, \ldots} (R)\)
 - Does not really add to expressive power

Summary of derived operators

- Join: \(R \bowtie S\)
- Natural join: \(R \bowtie S\)
- Intersection: \(R \cap S\)

- Many more
 - Semijoin, anti-semijoin, quotient, …

An exercise

- CID’s of the courses that Lisa is NOT taking

A trickier exercise

- SID’s of students who take exactly one course
 - Those who take at least one course
 - Those who take at least two courses
 - Take the difference!

- Take the difference!

- A deeper question: When (and why) is “−” needed?

Monotone operators

- If some old output rows must be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows remain “correct” when more rows are added to the input
 - Formally, \(R \subseteq R'\) implies \(\text{RelOp}(R) \subseteq \text{RelOp}(R')\)
Classification of relational operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Monotone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection: $\sigma_p(R)$</td>
<td>Monotone</td>
</tr>
<tr>
<td>Projection: $\pi_L(R)$</td>
<td>Monotone</td>
</tr>
<tr>
<td>Cross product: $R \times S$</td>
<td>Monotone</td>
</tr>
<tr>
<td>Join: $R \bowtie_S$</td>
<td>Monotone</td>
</tr>
<tr>
<td>Natural join: $R \bowtie S$</td>
<td>Monotone</td>
</tr>
<tr>
<td>Union: $R \cup S$</td>
<td>Monotone</td>
</tr>
<tr>
<td>Difference: $R - S$</td>
<td>Non-monotone (not w.r.t. S)</td>
</tr>
<tr>
<td>Intersection: $R \cap S$</td>
<td>Monotone</td>
</tr>
</tbody>
</table>

Why is “−” needed for “exactly one”?

- Composition of monotone operators produces a monotone query
 - Old output rows remain “correct” when more rows are added to the input
- Exactly-one query is non-monotone
 - Say Nelson is currently taking only CPS216
 - Add another record to `Enroll`: Nelson takes CPS214 too
 - Nelson is no longer in the answer
- So it must use difference!

Why do we need core operator X?

- **Difference**
 - The only non-monotone operator
- **Cross product**
 - The only operator that adds columns
- **Union**
 - The only operator that allows you to add rows?
 - A more rigorous proof?
- **Selection? Projection?**
 - Homework problem ☺

Why is r.a. a good query language?

- **Declarative?**
 - Yes, compared with older languages like CODASYL.
 - But operators are inherently procedural
- **Simple**
 - A small set of core operators whose semantics are easy to grasp
- **Complete?**
 - With respect to what?

Relational calculus

- $\{ s.SID \mid s \in Student \land \neg(\exists s' \in Student: s.GPA < s'.GPA) \}$, or
- $\{ s.SID \mid s \in Student \land (\forall s' \in Student: s.GPA \geq s'.GPA) \}$

Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation `Parent(parent, child)`, who are Bart’s ancestors?
- Why not recursion?
 - Optimization becomes undecidable
 - You can always implement it at the application level
 - Recursion is added to SQL nevertheless