Relational Database Design

CPS 216
Advanced Database Systems

Announcements

- DB2 accounts have been set up
 - Let me know if you have not received an email from me regarding your account
- Recitation session this Friday (January 17) on E/R database design and review of relational algebra and design theory
- Office hours
 - Me (D327): Wed. 3:35-4:35pm & Fri. 2:00-3:00pm
 - TA (D328): Tue. & Thu. 12:00-1:00pm

Database (schema) design

- Understand the real-world domain being modeled
- Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
- Translate the design to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- Apply database design theory to check the design
- Create DBMS schema

Entity-relationship (E/R) model

- Historically very popular
 - Primarily a design model; not implemented by any major DBMS nowadays
 - Can think of as a “watered-down” object-oriented design model
 - E/R diagrams represent designs

E/R example

- Entity: a “thing,” like a record or an object
- Entity set (rectangle): a collection of things of the same type, like a relation of tuples or a class of objects
- Relationship: an association among two or more entities
- Relationship set (diamond): a set of relationships of the same type; an association among two or more entity sets
- Attributes (ovals): properties of entities or relationships, like attributes of tuples or objects

ODL (Object Definition Language)

- Standardized by ODMG (Object Data Management Group)
 - Comes with a declarative query language OQL (Object Query Language)
 - Implemented by OODBMS (Object-Oriented Database Management Systems)
- Object oriented
- Based on C++ syntax
- Class declarations represent designs
ODL example

```java
class Student {
    attribute integer SID;
    attribute string name;
    relationship Set<Course> enrolledIn inverse Course::students;
};

class Course {
    attribute string CID;
    attribute string title;
    relationship Set<Student> students inverse Student::enrolledIn;
};
```

- Easy to map them to C++ classes
 - ODL attributes correspond to attributes of objects; complex types are allowed
 - ODL relationships can be mapped to pointers to other objects (e.g., `Set<Course> → set of pointers to objects of Course class`)

Not covered in this lecture

- E/R and ODL design
- Translating E/R and ODL designs into relational designs
 - Reference book (GMUW) has all the details
 - E/R design and E/R-relational translation will be covered in recitation session this Friday
- Next: relational design theory

Relational model: review

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)

Keys

- A set of attributes K is a key for a relation R if
 - In no instance of R will two different tuples agree on all attributes of K
 - That is, K is a "tuple identifier"
 - No proper subset of K satisfies the above condition
 - That is, K is minimal
- Example: $Student (SID, name, age, GPA)$
 - SID is a key of $Student$
 - $\{SID, name\}$ is not a key (not minimal)

Schema vs. data

```
Student
SID  name  age  GPA
123  Bart  20  2.3
124  Lisa  20  4.3
125  Ralph 8  2.3
... ...

Enroll (SID, CID)
  - (SID, CID)

Address (street_address, city, state, zip)
  - (street_address, city, state)
  - (street_address, zip)

Course (CID, title, room, day_of_week, begin_time, end_time)
  - (CID, day_of_week, begin_time)
  - (CID, day_of_week, end_time)
  - (room, day_of_week, begin_time)
  - (room, day_of_week, end_time)

More examples of keys

- Enroll (SID, CID)
- Address (street_address, city, state, zip)
- Course (CID, title, room, day_of_week, begin_time, end_time)
  - Not a good design, and we will see why later
Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
  - Many selection conditions are “key = value”
- “Pointers”
  - Example: Enroll (SID, CID)
    - SID is a key of Student
    - CID is a key of Course
    - An Enroll tuple “links” a Student tuple with a Course tuple
  - Many join conditions are “key = key value stored in another table”

Motivation for a design theory

- Why is this design bad?
  - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- Why is redundancy bad?
  - Wastes space, complicates updates, and promotes inconsistency
  - How about a systematic approach to detecting and removing redundancy in designs?
    - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form X → Y, where X and Y are sets of attributes in a relation R
- X → Y means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes of Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Must be b

Could be anything

FD examples

Address (street_address, city, state, zip)

- street_address, city, state → zip
- zip → city, state
- zip, state → zip?
  - This is a trivial FD
  - Trivial FD: LHS ⊇ RHS
  - zip → state, zip?
    - This is non-trivial, but not completely non-trivial
    - Completely non-trivial FD: LHS ∩ RHS = Ø

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- K → all (other) attributes of R
  - That is, K is a “super key”
- No proper subset of K satisfies the above condition
  - That is, K is minimal

Reasoning with FD’s

Given a relation R and a set of FD’s \( \mathcal{F} \)

- Does another FD follow from \( \mathcal{F} \)?
  - Are some of the FD’s in \( \mathcal{F} \) redundant (i.e., they follow from the others)?
- Is K a key of R?
  - What are all the keys of R?
Attribute closure

- Given \( R \), a set of FD’s \( \mathcal{F} \) that hold in \( R \), and a set of attributes \( Z \) in \( R \):
  - The closure of \( Z \) (denoted \( Z^+ \)) with respect to \( \mathcal{F} \) is the set of all attributes functionally determined by \( Z \)

- Algorithm for computing the closure
  1. Start with closure = \( Z \)
  2. If \( X \rightarrow Y \) is in \( \mathcal{F} \) and \( X \) is already in the closure, then also add \( Y \) to the closure
  3. Repeat until no more attributes can be added

A more complex example

- \( \text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade}) \)
  - \( \text{SID} \rightarrow \text{name}, \text{email} \)
  - \( \text{email} \rightarrow \text{SID} \)
  - \( \text{SID}, \text{CID} \rightarrow \text{grade} \)

- Not a good design, and we will see why later

Example of computing closure

- \( \mathcal{F} \) includes:
  - \( \text{SID} \rightarrow \text{name}, \text{email} \)
  - \( \text{email} \rightarrow \text{SID} \)
  - \( \text{SID}, \text{CID} \rightarrow \text{grade} \)

- \( \{ \text{CID}, \text{email} \}^+ = ? \)
  - \( \text{email} \rightarrow \text{SID} \)
  - Add \( \text{SID} \); closure is now \( \{ \text{CID}, \text{email}, \text{SID} \} \)
  - \( \text{SID} \rightarrow \text{name}, \text{email} \)
  - Add \( \text{name}, \text{email} \); closure is now \( \{ \text{CID}, \text{email}, \text{SID}, \text{name} \} \)
  - \( \text{SID}, \text{CID} \rightarrow \text{grade} \)
  - Add \( \text{grade} \); closure is now all the attributes in \( \text{StudentGrade} \)

Using attribute closure

- Given a relation \( R \) and set of FD’s \( \mathcal{F} \)
  - Does another FD \( X \rightarrow Y \) follow from \( \mathcal{F} \)?
    - Compute \( X^+ \) with respect to \( \mathcal{F} \)
    - If \( Y \subseteq X^+ \), then \( X \rightarrow Y \) follow from \( \mathcal{F} \)
  - Is \( K \) a key of \( R \)?
    - Compute \( K^+ \) with respect to \( \mathcal{F} \)
    - If \( K^+ \) contains all the attributes of \( R \), \( K \) is a super key
    - Still need to verify that \( K \) is minimal (how?)

Useful rules of FD’s

- Armstrong’s axioms
  - Reflexivity: If \( Y \subseteq X \), then \( X \rightarrow Y \)
  - Augmentation: If \( X \rightarrow Y \), then \( XZ \rightarrowYZ \) for any \( Z \)
  - Transitivity: If \( X \rightarrow Y \) and \( Y \rightarrow Z \), then \( X \rightarrow Z \)

- Rules derived from axioms
  - Splitting: If \( X \rightarrow YZ \), then \( X \rightarrow Y \) and \( X \rightarrow Z \)
  - Combining: If \( X \rightarrow Y \) and \( X \rightarrow Z \), then \( X \rightarrow YZ \)

Non-key FD’s

- Consider a non-trivial FD \( X \rightarrow Y \) where \( X \) is not a super key
  - Since \( X \) is not a super key, there are some attributes (say \( Z \)) that are not functionally determined by \( X \)

  \[
  \begin{array}{ccc}
  X & Y & Z \\
  a & b & 1 \\
  a & b & 2 \\
  \ldots & \ldots & \ldots \\
  \end{array}
  \]

  - The fact that \( a \) is always associated with \( b \) is recorded in multiple rows: redundancy!
Example of redundancy

- StudentGrade (SID, name, email, CID, grade)
- SID → name, email

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Email</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td><a href="mailto:milhouse@fox.com">milhouse@fox.com</a></td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS216</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td><a href="mailto:ralph@fox.com">ralph@fox.com</a></td>
<td>CPS214</td>
<td>C</td>
</tr>
</tbody>
</table>

Decomposition

- SID name email
- SID CID grade

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Email</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td><a href="mailto:milhouse@fox.com">milhouse@fox.com</a></td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS216</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td><a href="mailto:ralph@fox.com">ralph@fox.com</a></td>
<td>CPS214</td>
<td>C</td>
</tr>
</tbody>
</table>

Unnecessary decomposition

- SID name email

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td><a href="mailto:milhouse@fox.com">milhouse@fox.com</a></td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td><a href="mailto:ralph@fox.com">ralph@fox.com</a></td>
</tr>
</tbody>
</table>

Bad decomposition

- SID CID grade

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>CPS216</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>CPS214</td>
<td>C</td>
</tr>
</tbody>
</table>

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition

An answer: BCNF

- A relation $R$ is in Boyce-Codd Normal Form if
  - For every non-trivial FD $X \rightarrow Y$ in $R$, $X$ is a super key
  - That is, all FDs follow from “key → other attributes”

- When to decompose
  - As long as some relation is not in BCNF
- How to come up with a correct decomposition
  - Always decompose on a BCNF violation
  - Then it is guaranteed to be a correct decomposition!
BCNF decomposition algorithm

- Find a BCNF violation
  - That is, a non-trivial FD $X \rightarrow Y$ in $R$ where $X$ is not a super key of $R$
- Decompose $R$ into $R_1$ and $R_2$, where
  - $R_1$ has attributes $X \cup Y$
  - $R_2$ has attributes $X \cup Z$, where $Z$ contains all attributes of $R$ that are in neither $X$ nor $Y$
- Repeat until all relations are in BCNF

BCNF decomposition example

- $\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
  - BCNF violation: $\text{SID} \rightarrow \text{name}, \text{email}$
- $\text{Student} (\text{SID}, \text{name}, \text{email})$
  - BCNF
- $\text{Grade} (\text{SID}, \text{CID}, \text{grade})$
  - BCNF

Another example

- $\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
  - BCNF violation: $\text{email} \rightarrow \text{SID}$
- $\text{StudentID} (\text{email}, \text{SID})$
  - BCNF
- $\text{StudentGrade'} (\text{email}, \text{name}, \text{CID}, \text{grade})$
  - BCNF violation: $\text{email} \rightarrow \text{name}$
- $\text{StudentName} (\text{email}, \text{name})$
  - BCNF
- $\text{Grade} (\text{email}, \text{CID}, \text{grade})$
  - BCNF

Recap

- Functional dependencies: generalization of keys
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method of removing redundancies due to FD's
- BCNF: schema in this normal form has no redundancy due to FD's
- Not covered in this lecture: many other types of dependencies (e.g., MVD) and normal forms (e.g., 4NF)
  - GMUW has all the details
  - Relational design theory was a big research area in the 1970's, but there is not much now