Query Processing

CPS 216
Advanced Database Systems

Announcements

- Reading assignment for this week
 - "Query Evaluation Techniques for Large Databases," by Graefe. ACM Computing Surveys, 1993
 - "Improved Query Performance with Variant Indexes," by O’Neil and Quass. SIGMOD, 1997 (in red book)
- Recitation session this Friday (March 21)
 - Graded midterms and sample solution
 - Midterm common problems
- Homework #3 will be assigned next Monday (March 24)

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All with different performance characteristics
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time
Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O’s
 - Memory requirement

Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O’s: $B(R)$
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2 (double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined directly into another operator

Nested-loop join

- $R \bowtie_j S$
- For each block of R, and for each r in the block:
 For each block of S, and for each s in the block:
 Output rs if p evaluates to true over r and s
 - R is called the outer table; S is called the inner table
- I/O’s: $B(R) + |R| \cdot B(S)$
- Memory requirement: 4 (double buffering)
- Improvement: block-based nested-loop join
 - For each block of R, and for each block of S:
 For each r in the R block, and for each s in the S block: …
 - I/O’s:
 - Memory requirement: same as before
More improvements of nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O’s (less for block-based)
- Make use of available memory
 - Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
 - I/O’s: $B(R) + \lceil B(R) / (M - 2) \rceil \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S) / M$
 - Memory requirement: M (as much as possible)

External merge sort

Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\lceil B(R) / M \rceil$ level-0 sorted runs
- Pass i: merge $(M - 1)$ level-$(i-1)$ runs at a time, and write out a level-i run
 - $(M - 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs = \lceil # of level-$(i-1)$ runs / $(M - 1) \rceil$
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3, 0
- Each block holds one number, and memory has 3 blocks
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
 - 0 → 0
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9 + 0 → 0, 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 0, 3, 6, 9 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Performance of external merge sort

- Number of passes: \(\left\lfloor \log_{M-1} \left(\frac{B(R)}{M} \right) \right\rfloor + 1 \)
- I/O’s
 - Multiply by 2 \cdot B(R): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \cdot \log_{M} B(R)) \)
- Memory requirement: \(M \) (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off:
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
 - Trade-off:

Internal sort algorithm

- Quicksort
 - Fast
- Replacement selection
 - One block for input, one for output, rest for a heap
 - Fill the heap with input records
 - Find the smallest record in the heap that is no less than the largest record in the current run
 - If that exists, move it to the output buffer, and move a new record from input buffer into the heap
 - If that does not exist, flush output and start a new run
 - Slower than quicksort, but produces longer runs (twice the size of memory if records are in random order)
Sort-merge join

\[R \bowtie_{r.A = s.B} S \]

- Sort \(R \) and \(S \) by their join attributes, and then merge \(r, s \) = the first tuples in sorted \(R \) and \(S \).
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - Else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - Else output all matching tuples, and \(r, s = \) next in \(R \) and \(S \).

- I/O’s: sorting + 2 \(B(R) \) + 2 \(B(S) \)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins

Example

\[
\begin{array}{ccc}
R & S & R \bowtie_{R.A = S.B} S \\
\Rightarrow r_1.A = 1 & \Rightarrow s_1.B = 1 & r_1s_1 \\
\Rightarrow r_2.A = 3 & \Rightarrow s_2.B = 2 & r_2s_3 \\
\Rightarrow r_3.A = 3 & \Rightarrow s_3.B = 3 & r_3s_4 \\
\Rightarrow r_4.A = 5 & \Rightarrow s_4.B = 3 & r_4s_5 \\
\Rightarrow r_5.A = 7 & \Rightarrow s_5.B = 8 & r_5s_4 \\
\Rightarrow r_6.A = 7 & \Rightarrow s_6.B = 8 & r_6s_5 \\
\Rightarrow r_7.A = 8 & \Rightarrow s_7.B = 8 & r_7s_5 \\
\end{array}
\]

Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size \(M \) for \(R \) and \(S \)
- Merge and join: merge the runs of \(R \), merge the runs of \(S \), and merge-join the result streams as they are generated!
Performance of two-pass SMJ

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though

Hash join

- $R \bowtie_{R.A} S_B S$
- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join

Nested-loop join considers all slots
Hash join considers only those along the diagonal
Partitioning phase

- Partition R and S according to the same hash function on their join attributes

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

Performance of hash join

- I/O's: $3 \cdot (B(R) + B(S))$
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq B(R) / (M - 1)$
 - $M > \sqrt{B(R)}$
 - We can always pick R to be the smaller relation, so:
 - $M > \sqrt{\min(B(R), B(S))}$
Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it further!
 - See the duality in multi-pass merge sort here?

Hybrid hash join

- What if there is extra memory available?
 - Use it to avoid writing/re-reading partitions
 - Of both R and S!

A generalization of the idea is described in the survey paper by Graefe

Hash join versus SMJ

(Assuming two-pass)

- I/O’s: same
- Memory requirement: hash join is lower
 - $\sqrt{\min(B(R), B(S))) < \sqrt{B(R) + B(S))}$
 - Hash join wins big when two relations have very different sizes
- Other factors
What about nested-loop join?

- May be best if
 - Example:

- Necessary for
 - Example:

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join

- Duplicate elimination
 - Check for duplicates within each partition/bucket

- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination

- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning

- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)