Announcements

- Reading assignment this week
 - “Randomized Algorithms for Optimizing Large Join Queries,” by Ioannidis & Kang. SIGMOD 1990
 - “Online Aggregation,” by Hellerstein et al. SIGMOD 1997
- Homework #3 due in 2 days (Wednesday, April 9)
- Homework #4 out in 2 days (Wednesday, April 9)
- Project milestone #2 due in 7 days (Monday, April 14)

Review of the bigger picture

Query optimization
- Consider a space of possible plans
- Estimate costs of plans in the search space
- Search through the space for the “best” plan (today)

- Focus on select-project-join query blocks
 - Join ordering is the most important subproblem

Search space

- “Bushy” plan example:

 ![Bushy Plan Example](image)

- Search space is huge: 30240 bushy plans for a six-table join
- More if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) input multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
 - Significantly fewer, but still lots— $n!$ (720 for $n = 6$)

A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_{p_i} R_i$
 - Start with the pair S_x, S_y with the smallest estimated size for $S_x \bowtie S_y$
- Repeat until no table is left:
 - Pick S_z from the remaining tables such that the join of S_z and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size
 - Complexity?
Query optimization in System R

- A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., SIGMOD 1979)
- Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans using dynamic programming
 - "Interesting orders"

Bottom-up plan generation

- Observation 1: Once we have joined k tables together, the method of joining this result further with another table is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
 - Not exactly accurate (next slide)
- Bottom-up generation of optimal left-deep plans
 - Compute the optimal plans for joining k tables together
 - Suboptimal plans are pruned
 - From these plans, derive optimal plans for joining $k+1$ tables

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: nested-loop join (beats sort-merge)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.).

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

System-R algorithm

- Pass 1: Find the best single-table plans
- Pass 2: Find the best two-table plans by considering each single-table plan (from Pass 1) as the outer input and every other table as the inner input
- Pass k: Find the best k-table plans by considering each $(k-1)$-table plan (from Pass $k-1$) as the outer input and every other table as the inner input
- Heuristics
 - Push selections and projections down
 - Process cross products at the end

Reasoning about predicates

- `SELECT * FROM R, S, T WHERE R.A = S.A AND S.A = T.A;`
 - Looks like a cross product between R and T
 - No join condition
 - But there is really a join between R and T
 - $R.A = T.A$ is implied from the other two predicates
 - A good optimizer should be able to detect this case and consider the possibility of joining R with T first
System-R algorithm example

- SELECT SID, CID
 FROM Student, Enroll, Course
 WHERE Student.age < 10
 AND Student.SID = Enroll.SID
 AND Enroll.CID = Course.CID
 AND Course.title LIKE '%data%';

- Primary keys/indexes
 ▪ Student(SID), Enroll(CID, SID)
 ▪ Course(CID)

- Ordered, secondary indexes
 ▪ Student(age)
 ▪ Course(title)

Example: pass 1

- Plans for {Student}
 • S1: Table scan, then filter (age < 10); cost 100; result ordered by SID ← interesting order
 • S2: Index scan using condition (age < 10); cost 5; result ordered by age ← not an interesting order

- Plans for {Enroll}
 • E1: Table scan; cost 1000; result ordered by CID, SID ← interesting order

- Plans for {Course}
 • C1: Table scan, then filter title LIKE '%data%'; cost 40; result ordered by CID ← interesting order
 • C2: Index scan, then filter title LIKE '%data%'; cost 60; result ordered by title ← not an interesting order

Example: pass 2

- Plans for {Student, Enroll}
 • Extending best plans for {Student}
 • From S1 (table scan, then filter (age < 10))
 - Block-based nested loop join with Enroll; cost 1100
 - Sort Enroll by SID, and merge join; cost 3100; ordered by SID ← no longer an interesting order
 - … …
 • From S2 (index scan using condition (age < 10))
 • Block-based nested loop join with Enroll; cost 1005
 - … …
 • Extending best plans for {Enroll} … …

Example: pass 2 continued

- Plans for {Student, Course}
 • Ignore; it is a cross product

- Plans for {Enroll, Course}
 • Extending best plans for {Course}
 • From C1 (table scan, then filter (title LIKE '%data%'))
 • Merge join, cost 1040
 - … …
 • Extending best plans for {Enroll} … …

Example: pass 3

- Finally, plans for {Student, Enroll, Course}
 • Extending best plans for {Student, Enroll}
 • (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course);
 cost … …
 • … …
 • Extending best plans for {Student, Course}
 • None!
 • Extending best plans for {Enroll, Course}
 • (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(Student));
 cost … …
 • … …

Considering bushy plans

Straightforward generalization:
- Store all optimal 1-table, 2-table, …, and k-table plans
- To find the optimal plan for k + 1 tables
 • For every possible partition of these tables into two groups, find the best ways of joining the optimal plans for the two groups
 • Store the overall optimal plans
Optimizer “blow-up”

- A 20-way join will easily choke an optimizer using the System-R algorithm

Solutions

- Heuristics-based query optimization
- Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)
- Genetic programming (PostgreSQL)

Search space revisited

Transformations

Relational algebra equivalences
(or query rewrite rules in general):

- Join method choice: $R \bowtie_{\text{method}_1} S \rightarrow R \bowtie_{\text{method}_2} S$
- Join commutativity: $R \bowtie S \rightarrow S \bowtie R$
- Join associativity: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T)$
- Left join exchange: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T)$
- Right join exchange: $R \bowtie (S \bowtie T) \rightarrow S \bowtie (R \bowtie T)$

Why the last two redundant rules?

- “Shortcuts” to avoid using the join commutativity rule, which does not change the cost of certain joins (example?)—creating plateaus in the plan space

Iterative improvement

- Repeat until some stopping condition (e.g., time runs out):
 - Start with a random plan
 - Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
- Return the smallest local optimum found

Simulated annealing

- Start with a plan and an initial temperature
- Repeat until temperature is 0:
 - Repeat until some equilibrium (e.g., a fixed number of iterations):
 - Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\Delta \text{cost} / \text{temperature}}$)
 - Larger \rightarrow smaller probability
 - Lower temperature \rightarrow smaller probability
 - Reduce temperature
- Return the plan visited with the lowest cost

Two-phase optimization

- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements

Why does this heuristic tend to work better than both iterative improvement and simulated annealing?
Shape of the cost function

- An average local optimum has a much lower cost than an average plan.
- The average distance between a random state and a local optimum is long.
- There are lots of local optima.
- Many local optima are connected together through low-cost plans within short distances.

Comparison of randomized algorithms

- Iterative improvement
 - Too easily trapped in a local optimum
 - Too much work to restart
- Simulated annealing
 - Too much time spent on high-cost plans
- Two-phase
 - Phase I uses iterative improvement to get to the cup bottom quickly
 - Phase II uses simulated annealing to explore the cup bottom further