Announcements

- Homework #4 due in 2 days (April 23)
- Recitation session this Friday or next Monday?
 - Homework #4 and final review
 - Will announce on newsgroup
- Project demos start next week (April 28)
 - Sign-up sheet will be circulated
- Final exam in 10 days (D243; Thursday, May 1, 2-5pm)
 - Comprehensive (everything up to today’s lecture, with emphasis on the second half of the course)
 - Open book, open notes
 - No time pressure!
- Please fill out course evaluations at the end of this lecture

Review: basics

- Relational model/algebra → physical data independence
- Design theory (FD’s, BCNF) → help eliminate redundancy
- SQL
 - NULL and three-value logic → nifty feature, big mess
 - Bag versus set semantics
 - Subqueries, grouping and aggregation
 - Views → logical data independence
 - Materialized views → reintroduce redundancy to improve performance
 - Constraints → the more you know the better you can do
 - Triggers (ECA) → “active” data
 - Transactions and isolation levels

Review: physical data organization

- Storage hierarchy (DC vs. Pluto) → count I/O’s
- Data layout
 - Record layout (handling variable-length fields, NULL’s)
 - Block layout (NSM, DSM, PAX) → inter-/intra-record locality
- Access paths
 - Primary versus secondary indexes → again, reintroduce redundancy to improve performance
 - Tree-based indexes: ISAM, B⁺-tree, R-tree, GIST
 - Hash-based indexes: extensible, linear
 - Text indexes: inverted lists, signature files
 - Variant indexes: bitmap, projection, bit-sliced indexes
 - Main-memory indexes: T-index, CSS and CSB⁺-trees
 → Fundamental trade-off: query versus update cost

Review: query processing

- Buffer management
 - Per-query, per-table policy is ideal
 → The more you know the better you can do
- Sort- and hash-based algorithms (and their duality)
- Index-based algorithms
- Pipelined execution with iterators

Review: query optimization or “goodification”?

- Heuristics: push selections down; smaller joins first
 → Reduce the size of intermediate results
- Cost-based
 - Query rewrite: merge blocks to get a bigger search space
 - Cost estimation: use statistics (e.g., histograms)
 - Search algorithm: dynamic programming (+ interesting orders), randomized search, generic programming, etc.
- Online query processing: change in cost metric—throughput ≠ user satisfaction
 → Trade-off: throughput versus responsiveness
- Adaptive query processing: adapt on a per-tuple basis
 → The sooner you know the better you can do
 → Trade-off: overhead versus adaptivity

Review: transaction processing

- ACID properties
- Concurrency control
 - Locking-based: strict 2PL; handling deadlocks; multiple-granularity locking; predicate locking and tree locking
 - Validation-based, timestamp-based, multi-version
 → Trade-off: blocking versus aborts and restarts
- Recovery
 - Steal: requires undo logging
 - No force: requires redo logging
 - WAL (log holds the truth)