E/R Model & Database Design

CPS 216

Advanced Database Systems

January 17, 2003

Thanks Dr. Jun Yang for providing the slides!

Database design

- Understand the real-world domain being modeled
 - Student? Faculty? Courses? What relationships?
- Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL) – Covered by Jun’s class
- Translate specification to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- Create DBMS schema

Entity-relationship (E/R) model

- Historically very popular
- Can think of as a “watered-down” object-oriented design model
- E/R diagrams represent designs
- Primarily a design model—not implemented by any major DBMS

E/R basics

- Entity: a “thing,” like a record or an object
 - Graduate student Junyi, Professor Jun Yang
- Entity set: a collection of things of the same type, like a relation of tuples or a class of objects
 - Student(Junyi, Zhihui, Rebecca…), Professor(Jun, Amin, Jeff….)
 - Represented as a rectangle
- Relationship: an association among two or more entities
 - Professor Jun Yang ADVISES graduate student Junyi
 - Relationship set: a set of relationships of the same type; an association among two or more entity sets
 - Professor ADVISES Student
 - Represented as a diamond

E/R basics(cont.)

- Attributes: properties of entities or relationships, like attributes of tuples or objects
 - Entity Set
 - Student(Name, SID, Department)
 - Relationship Set
 - Advise(Professor, Student, ResearchTopic)
 - Represented as ovals

An example E/R diagram

- Students enroll in courses
 - A key of an entity set is represented by underlining all attributes in the key
 - A key is a set of attributes whose values can belong to at most one entity in an entity set—like a key of a relation
 - Social security number, student ID, etc
 - Very simple, right?
Attributes of relationships

- Example: students take courses and receive grades
 - Students
 - Courses
 - Enroll
 - grade
 - title

- Where do the grades go?
 - With Students?
 - But a student can have different grades for multiple courses
 - With Courses?
 - But a course can assign different grades for multiple students
 - With Enroll?

More on relationships

- There could be multiple relationship sets between the same entity sets
 - Example: Students Enroll Courses; Students TA Courses
- In a relationship set, each relationship is uniquely identified by the entities it connects
 - Example: Between Tom and CPS216, there can be at most one Enroll relationship and at most one TA relationship

Multiplicity of relationships

- E and F: entity sets
- Many-many: Each entity in E is related to 0 or more entities in F and vice versa
 - Example:
 - Tom enrolls courses CPS216, CPS240, etc.
 - Tom, Bart, Jeff enroll in CPS216

- Notation: "One" (0 or 1) is represented by an arrow

Multiplicity of relationships (cont.)

- Many-one: Each entity in E is related to 0 or 1 entity in F, but each entity in F is related to 0 or more in E
 - Example:
 - One-one: Each entity in E is related to 0 or 1 entity in F and vice versa
 - Example:
 - Notation: "One" (0 or 1) is represented by an arrow

N-ary relationships

- Example: Each course has multiple TA’s; each student is assigned to one TA
 - Students
 - Enroll
 - Course
 - TA’s

- Meaning of an arrow into E: Pick one entity from each other entity set; together they must be related to 0 or 1 entity in E
 - Tom is assigned ONE TA Lisa in CPS216

N-ary versus binary relationships

- Can we model n-ary relationships using just binary relationships?
 - No; for example:
 - Bart takes CPS196 and CPS114
 - Lisa TA’s CPS196 and CPS114
 - Bart is assigned to Lisa in CPS196, but not in CPS114
Roles in relationships

- An entity set may participate more than once in a relationship set
 - May need to label edges to distinguish roles
- Examples
 - People are married as husband and wife; label needed
 - People are roommates of each other; label not needed

Examples

- People are married as husband and wife; label needed
- People are roommates of each other; label not needed

Weak entity set

- Example: rooms in buildings
- Sometimes the key of an entity set \(E \) comes not completely from its own attributes, but from the keys of other (one or more) entity sets to which \(E \) is linked by many-one (or one-one) relationship sets
 - \(E \) is called a weak entity set (double rectangle)
 - Many-one (or one-one) relationship sets required (double diamonds)
 - With many-many, we would not know which entity provides the key value

ISA relationships

- Similar to the idea of subclasses in object-oriented programming: subclass = special case, more properties, and fewer entities
 - Represented as a triangle (direction is important)
- Example: Graduate students are students, but they also have offices

Case study 1

- Design a database representing cities, counties, and states
 - For states, record name and capital (city)
 - For counties, record name, area, and location (state)
 - For cities, record name, population, and location (county and state)
- Assume the following:
 - Names of states are unique
 - Names of counties are only unique within a state
 - Names of cities are only unique within a county
 - A city is always located in a single county
 - A county is always located in a single state

Case study 1: first design

- County area information is repeated for every city in the county
 - Redundancy is bad (why?)
- State capital should really be a city
 - "Reference" entities through explicit relationships

Summary of E/R concepts

- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes of relationships
 - Multiplicity
 - Roles
 - ISA relationships
Case study 1: second design

![Diagram of case study 1: second design]

- Technically, nothing in this design could prevent a city in state X from being the capital of another state Y, but oh well…

Case study 2

- Design a database consistent with the following:
 - A station has a unique name and an address, and is either an express station or a local station
 - A train has a unique number and an engineer, and is either an express train or a local train
 - A local train can stop at any station
 - An express train only stops at express stations
 - A train can stop at a station for any number of times during a day
 - Train schedules are the same everyday

Case study 2: first design

![Diagram of case study 2: first design]

- Nothing in this design prevents express trains from stopping at local stations
 - Capture all constraints if possible
- A train can stop at a station only once during a day
 - Do not introduce constraints

Case study 2: second design

![Diagram of case study 2: second design]