Minimal Spanning Tree

- **In an undirected graph, find a minimal spanning tree**
 - Minimal means …
 - Spanning means …
 - Tree means …

- **We can use Prim's Algorithm. Similar to Dijkstra's Algorithm**

 start with initial vertex in MST
 find minimal edge from MST vertex to other vertex
 add minimal edge/vertex to MST
 repeat until each vertex added
Prim's Algorithm

- How do we know this algorithm works?
 - Suppose not, some graph for which algorithm yields non minimal spanning tree, is it not a tree? Not spanning? ...
 - Assume we have such a graph, call it G, now we reason ...
 - Will lead to contradiction (exploit minimal property)

- How efficient is Prim's Algorithm?
 - Depends on implementation, look at Dijkstra and modify
 - What did Dijkstra's algorithm do? Problem solved?
Implementation, priority queue

- Keep track of shortest distance from MST vertices to others, use chosen start vertex
 - Initially all are infinity except start is 0 from itself
 - Choose minimal edge between MST vertices and others
 - This is same as choosing minimal element in PQ

- When choosing, modify distances by adding elements to PQ appropriately
 - When distance < current best modify current best (add new element to PQ)
 - How is this different from Dijkstra's algorithm?
 - How do we construct path?